def __init__(self): super().__init__() self.num_classes = num_classes self.feature_model = resnet_model('resnet50', 'layer4').cuda() self.pose_models = nn.ModuleList([ model_3layer(N0, N1, N2, ndim) for i in range(self.num_classes) ]).cuda()
def __init__(self): super().__init__() self.num_classes = num_classes if args.feature_network == 'resnet': self.feature_model = resnet_model('resnet50', 'layer4').cuda() elif args.feature_network == 'vgg': self.feature_model = vgg_model('vgg13', 'fc6').cuda() self.pose_models = nn.ModuleList([model_3layer(args.N0, args.N1, args.N2, ndim) for i in range(self.num_classes)]).cuda()
def __init__(self): super().__init__() self.num_classes = num_classes if args.feature_network == 'resnet': self.feature_model = resnet_model('resnet50', 'layer4').cuda() elif args.feature_network == 'vgg': self.feature_model = vgg_model('vgg13', 'fc6').cuda() self.pose_model = model_3layer(args.N0, args.N1, args.N2, ndim).cuda() self.category_model = nn.Linear(args.N0, num_classes).cuda()
def __init__(self, dict_size): super().__init__() self.num_classes = num_classes self.feature_model = resnet_model('resnet50', 'layer4').cuda() self.pose_models = nn.ModuleList([model_3layer(args.N0, args.N1, args.N2, dict_size) for i in range(self.num_classes)]).cuda()
def __init__(self): super().__init__() self.num_classes = num_classes self.feature_model = resnet_model('resnet50', 'layer4').cuda() self.pose_model = model_3layer(args.N0, args.N1, args.N2, ndim).cuda()