pixarea, H0_min, H0_max, z_min, z_max, zerr_use=zerr_use, cosmo_use=cosmo_use)) posterior = np.exp(lnposterior) plt.ion() plt.clf() plt.plot(H0_array, np.exp(lnposterior)) #plt.yscale('log') plt.xlabel('$H_0$ [km/s/Mpc]', fontsize=20) plt.ylabel('$p$', fontsize=20) plt.tight_layout() plt.savefig(DIR_PLOTS + out_plot) idx_max = np.argmax(posterior) perc_max = posterior[:idx_max].sum() / posterior.sum() maxposterior = posterior[idx_max] print "ML percentile: ", perc_max print "H0 max posterior: ", H0_array[idx_max], "+", pos.percentile( perc_max + 0.34, posterior, H0_array) - H0_array[idx_max], "-", H0_array[idx_max] - pos.percentile( perc_max - 0.34, posterior, H0_array) print "H0 Median: ", pos.percentile(0.50, posterior, H0_array)
if blind: #Output path for blinding file blindpath = DIR_MAIN + "/blinding_file.p" H0_blinded_array = pos.make_blind(H0_array, blindpath) print 'Applying blinding factor. Saving value on ', blindpath H0_array_out = H0_blinded_array print "Blinded results:" else: print 'No blinding applied!' H0_array_out = H0_array H0_maxlike = H0_array_out[idx_max] H0_err_p = abs(H0_array_out[idx_err_p] - H0_array_out[idx_max]) H0_err_m = abs(H0_array_out[idx_err_m] - H0_array_out[idx_max]) H0_median = pos.percentile(0.50, posterior[:, nevent], H0_array_out) print " ML percentile: ", perc_max print " H0 ML: ", H0_maxlike, "+", H0_err_p, "-", H0_err_m print " H0 Median: ", H0_median fmt = "%10.5f" if blind: header = "H0_Blinded" else: header = "H0" for nevent in range(nevents): norm = np.trapz(posterior[:, nevent], H0_array_out) posterior[:, nevent] = posterior[:, nevent] / norm dl = int(distmu_average[nevent])
posterior[:, nevent] = np.exp(lnposterior) idx_max = np.argmax(lnposterior) perc_max = posterior[:idx_max].sum() / posterior.sum() maxposterior = posterior[np.argmax(lnposterior)] if blind: #Output path for blinding file blindpath = DIR_MAIN + "/blinding_file.p" H0_blinded_array = pos.make_blind(H0_array, blindpath) print 'Applying blinding factor. Saving value on ', blindpath print "\nBlinded ML percentile: ", perc_max print "Blinded H0 ML: ", H0_blinded_array[idx_max], "+", pos.percentile( perc_max + 0.34, posterior[:, nevent], H0_blinded_array) - H0_blinded_array[ idx_max], "-", H0_blinded_array[idx_max] - pos.percentile( perc_max - 0.34, posterior[:, nevent], H0_blinded_array) print "Blinded H0 Median: ", pos.percentile(0.50, posterior[:, nevent], H0_blinded_array) else: print 'No blinding applied!' print "\nML percentile: ", perc_max print "H0 ML: ", H0_array[idx_max], "+", pos.percentile( perc_max + 0.34, posterior[:, nevent], H0_array ) - H0_array[idx_max], "-", H0_array[idx_max] - pos.percentile( perc_max - 0.34, posterior[:, nevent], H0_array) print "H0 Median: ", pos.percentile(0.50, posterior[:, nevent], H0_array)
#plt.yscale('log') plt.xlabel('$H_0$ [km/s/Mpc]', fontsize=20) plt.ylabel('$p$', fontsize=20) plt.tight_layout() plt.legend() plt.show() plt.savefig('H0_posterior_GW170817.png') idx_max = np.argmax(posterior) perc_max = posterior[:idx_max].sum() / posterior.sum() maxposterior = posterior[idx_max] print "No counterpart:" print "ML percentile: ", perc_max print "H0 ML: ", H0_array[idx_max], "+", pos.percentile( perc_max + 0.34, posterior, H0_array) - H0_array[idx_max], "-", H0_array[idx_max] - pos.percentile( perc_max - 0.34, posterior, H0_array) print "H0 Median: ", pos.percentile(0.50, posterior, H0_array) idx_max = np.argmax(posterior_ngc) perc_max = posterior_ngc[:idx_max].sum() / posterior_ngc.sum() maxposterior = posterior_ngc[idx_max] print "Assuming NGC 4993" print "ML percentile: ", perc_max #print "H0 ML +-34%: ", H0_array[idx_max], "+", pos.percentile(perc_max+0.34, posterior_ngc, H0_array)- H0_array[idx_max], "-", H0_array[idx_max]-pos.percentile(perc_max-0.34, posterior_ngc, H0_array) print "H0 ML with 16th and 84th percentiles: ", H0_array[idx_max], "+", np.abs( pos.percentile(0.84, posterior_ngc, H0_array) - H0_array[idx_max]), "-", np.abs(
lnposterior_bin = pos.lnprob_taud(taud_array[i], z_gal, pb_gal, distmu_gal, distsigma_gal, distnorm_gal, H0, age_gal, tau_gal, norm_sfh_gal, taud_min, taud_max) print lnposterior_bin lnposterior.append(lnposterior_bin) posterior = np.exp(lnposterior) plt.ion() plt.clf() plt.plot(taud_array, np.exp(lnposterior)) plt.yscale('log') plt.xlabel(r'$\tau_d$ [Gyr]', fontsize=20) plt.ylabel('$p$', fontsize=20) plt.tight_layout() plt.show() plt.savefig('../plots/taud_posterior_GW170814.png') idx_max = np.argmax(lnposterior) perc_max = posterior[:idx_max].sum() / posterior.sum() maxposterior = posterior[np.argmax(lnposterior)] print "ML percentile: ", perc_max print "H0 ML: ", taud_array[idx_max], "+", pos.percentile( perc_max + 0.34, posterior, taud_array ) - taud_array[idx_max], "-", taud_array[idx_max] - pos.percentile( perc_max - 0.34, posterior, taud_array) print "H0 Median: ", pos.percentile(0.50, posterior, taud_array)