Example #1
0
    def __init__(self,
                 n=None,
                 epsilon=None,
                 stdev=None,
                 known_stdev=None,
                 alpha=None,
                 beta=None,
                 power=None,
                 hypothesis=None):

        if n is not None:
            is_integer(n, 'N')
            self.n = n
        else:
            self.n = None

        is_numeric(epsilon, 'epsilon')
        self.epsilon = epsilon

        is_positive(stdev, 'stdev')
        self.stdev = stdev

        self.theta = self.epsilon / self.stdev

        if known_stdev is not None:
            is_boolean(known_stdev, 'known_stdev')
        else:
            known_stdev = True
        self.known_stdev = known_stdev

        # Initialize the remaining arguments through the parent.
        super(MeansBase, self).__init__(alpha=alpha,
                                        power=power,
                                        beta=beta,
                                        hypothesis=hypothesis)
Example #2
0
    def __init__(self,
                 n=None,
                 alpha=None,
                 power=None,
                 beta=None,
                 hypothesis=None,
                 margin=None,
                 hazard_ratio=None,
                 proportion_visible=None,
                 control_proportion=None,
                 treatment_proportion=None):
        is_positive(hazard_ratio, 'Hazard Ratio')
        is_in_0_1(treatment_proportion, 'Treatment Proportion')
        is_in_0_1(control_proportion, 'Control Proportion')
        is_in_0_1(proportion_visible, 'Proportion Visible')

        epsilon = math.log(hazard_ratio)
        stdev = treatment_proportion * control_proportion * proportion_visible
        stdev = 1 / math.sqrt(stdev)

        super(Cox, self).__init__(n=n,
                                  mu=epsilon,
                                  mu_0=0,
                                  stdev=stdev,
                                  known_stdev=True,
                                  alpha=alpha,
                                  beta=beta,
                                  power=power,
                                  margin=margin,
                                  hypothesis=hypothesis)
Example #3
0
    def __init__(self,
                 n=None,
                 mu=None,
                 stdev=None,
                 hypothesis=None,
                 margin=None,
                 alpha=None,
                 beta=None,
                 power=None,
                 known_stdev=None):
        if n is not None:
            if isinstance(n, int):
                self.n = n
            else:
                raise ValueError('`n` should be of type Int.')
        else:
            self.n = None

        for value in mu:
            is_numeric(value, 'value')
        mu = [float(value) for value in mu]
        self.mu = mu
        self.n_groups = len(self.mu)
        if self.n_groups % 2 == 0:
            # If the number of groups is even, the Williams design is
            # equivalent to a n_groups by n_groups crossover design
            self.k = self.n_groups
        else:
            # Otherwise, it is equal to a 2*n_groups by n_groups crossover
            # design
            self.k = self.n_groups * 2

        is_positive(stdev, 'stdev')
        self.stdev = stdev

        if known_stdev is not None:
            is_boolean(known_stdev, 'known_stdev')
        else:
            known_stdev = True
        self.known_stdev = known_stdev

        if margin is not None:
            is_numeric(margin, 'margin')
        else:
            margin = 0
        self.margin = float(margin)

        # Initialize the remaining arguments (alpha, beta, power)
        # through the parent.
        super(MultiSampleWilliams, self).__init__(alpha=alpha,
                                                  power=power,
                                                  beta=beta,
                                                  hypothesis=hypothesis)
Example #4
0
    def __init__(self,
                 n=None,
                 mu=None,
                 stdev=None,
                 comparison=None,
                 known_stdev=None,
                 alpha=None,
                 beta=None,
                 power=None):
        if n is not None:
            if isinstance(n, int):
                self.n = n
            else:
                raise ValueError('`n` should be of type Int.')
        else:
            self.n = None

        for value in mu:
            is_numeric(value, 'value')
        self.mu = mu
        self.mean_mu = statistics.mean(self.mu)
        self.n_groups = len(self.mu)

        # The number of comparisons of interest for pairwise comparisons
        self.tau = self.n_groups * (self.n_groups - 1) / 2.0

        is_positive(stdev, 'stdev')
        self.stdev = stdev

        if comparison in ['simultaneous', 'pairwise']:
            self.comparison = comparison
        elif comparison is None:
            self.comparison = 'pairwise'
        else:
            raise ValueError(("`comparison` should be in ['simultaneous', "
                              "'pairwise']"))

        if known_stdev is not None:
            is_boolean(known_stdev, 'known_stdev')
        else:
            known_stdev = True
        self.known_stdev = known_stdev

        # Initialize the remaining arguments (alpha, beta, power)
        # through the parent.
        super(OneWayAnova, self).__init__(alpha=alpha,
                                          power=power,
                                          beta=beta,
                                          hypothesis='equality')
Example #5
0
    def __init__(self,
                 n_1=None,
                 n_2=None,
                 ratio=1,
                 alpha=None,
                 power=None,
                 beta=None,
                 hypothesis=None,
                 margin=None,
                 control_hazard=None,
                 treatment_hazard=None,
                 gamma=None,
                 trial_time=None,
                 accrual_time=None):

        is_positive(accrual_time, 'Accrual Time')
        is_positive(trial_time, 'Trial Time')
        if gamma is None:
            gamma = 1
        else:
            is_non_negative(gamma, 'Gamma')

        g = gamma
        t = trial_time
        t_0 = accrual_time
        variance = []

        is_positive(control_hazard, 'Control Hazard')
        is_positive(treatment_hazard, 'Treatment Hazard')

        for hazard in [control_hazard, treatment_hazard]:
            if g == 0:
                EVNum = (math.exp(-hazard * t) - math.exp(-hazard * (t - t_0)))
                EVDenom = hazard * t_0
            else:
                EVNum = (g * math.exp(-1 * hazard * t) * (1 - math.exp(
                    (hazard - g) * t_0)))
                EVDenom = (hazard - g) * (1 - math.exp(-g * t_0))
            EV = 1 + EVNum / EVDenom
            variance.append(hazard**2 / EV)

        self.stdev_control = math.sqrt(variance[0])
        self.stdev_treatment = math.sqrt(variance[1])

        # Initialize the remaining arguments through the parent.
        super(Exponential, self).__init__(
            n_1=n_1,
            n_2=n_2,
            ratio=ratio,
            mu_1=control_hazard,
            mu_2=treatment_hazard,
            stdev=1,  # dummy value
            known_stdev=True,
            alpha=alpha,
            beta=beta,
            power=power,
            margin=margin,
            hypothesis=hypothesis)
Example #6
0
    def __init__(self,
                 n=None,
                 alpha=None,
                 beta=None,
                 power=None,
                 p_11=None,
                 p_12=None,
                 p_21=None,
                 p_22=None,
                 gamma=None,
                 stdev_1=None,
                 stdev_2=None):

        if gamma is None:
            is_in_0_1(p_11, 'p_11 should be in [0, 1].')
            is_in_0_1(p_12, 'p_12 should be in [0, 1].')
            is_in_0_1(p_21, 'p_21 should be in [0, 1].')
            is_in_0_1(p_22, 'p_22 should be in [0, 1].')

            gamma = (math.log(p_11 / (1 - p_11)) + math.log(p_12 /
                                                            (1 - p_12)) -
                     math.log(p_21 / (1 - p_21)) - math.log(p_22 / (1 - p_22)))
        else:
            is_numeric(gamma, '`gamma` should be a number.')

        if n is not None:
            is_integer(n, '`n` should be of type Int.')
        self.n = n

        is_positive(stdev_1, 'stdev_1')
        self.stdev_1 = stdev_1

        is_positive(stdev_2, 'stdev_2')
        self.stdev_2 = stdev_2

        self.theta = gamma / math.sqrt(stdev_1**2 + stdev_2**2)

        # Set remaining variables.
        super(CarryOverEffect, self).__init__(alpha=alpha,
                                              beta=beta,
                                              power=power)
Example #7
0
    def __init__(self,
                 delta=None,
                 stdev_wr=None,
                 stdev_wt=None,
                 stdev_br=None,
                 stdev_bt=None,
                 theta_BE=None,
                 m_plus=None,
                 alpha=None,
                 power=None,
                 beta=None):
        is_numeric(delta, 'delta')
        self.delta = delta

        is_positive(stdev_wr, 'stdev_wr')
        self.stdev_wr = stdev_wr
        is_positive(stdev_wt, 'stdev_wt')
        self.stdev_wt = stdev_wt
        is_positive(stdev_bt, 'stdev_bt')
        self.stdev_bt = stdev_bt
        is_positive(stdev_br, 'stdev')
        self.stdev_br = stdev_br

        if theta_BE is None:
            theta_BE = 1
        else:
            is_positive(theta_BE, 'theta_BE')
        self.theta_BE = theta_BE

        if m_plus is None:
            m_plus = MAX_ITERATIONS
        else:
            is_integer(m_plus, 'm_plus')
        self.m_plus = m_plus

        # Initialize the remaining arguments through the parent.
        super(InVitro, self).__init__(hypothesis="equivalence",
                                      alpha=alpha,
                                      beta=beta,
                                      power=power)
Example #8
0
    def __init__(self,
                 delta=None,
                 stdev_wr=None,
                 stdev_wt=None,
                 stdev_br=None,
                 stdev_bt=None,
                 rho=None,
                 theta_IBE=None,
                 alpha=None,
                 power=None,
                 beta=None):
        is_numeric(delta, 'delta')
        self.delta = delta

        is_positive(stdev_wr, 'stdev_wr')
        self.stdev_wr = stdev_wr
        is_positive(stdev_wt, 'stdev_wt')
        self.stdev_wt = stdev_wt
        is_positive(stdev_bt, 'stdev_br')
        self.stdev_br = stdev_br
        is_positive(stdev_bt, 'stdev_bt')
        self.stdev_bt = stdev_bt
        is_in_0_1(rho, 'rho')
        self.rho = rho

        var_d = self.stdev_bt**2 + self.stdev_br**2 - 2 * self.rho * self.stdev_bt**2 * self.stdev_bt**2
        self.stdev_d = math.sqrt(var_d)
        if theta_IBE is None:
            theta_IBE = 1.74
        else:
            is_positive(theta_IBE, 'theta_IBE')
        self.theta_IBE = theta_IBE

        # Initialize the remaining arguments through the parent.
        super(Individual, self).__init__(hypothesis="equivalence",
                                         alpha=alpha,
                                         beta=beta,
                                         power=power)
    def __init__(self,
                 n=None,
                 odds_ratio=None,
                 stdev=None,
                 hypothesis=None,
                 margin=None,
                 alpha=None,
                 beta=None,
                 power=None):
        is_positive(odds_ratio, '`odds_ratio` should be greater than 0')
        log_odds = math.log(odds_ratio)

        # Initialize the remaining arguments through the parent.
        super(RelativeRiskCrossover, self).__init__(n=n,
                                                    mu_1=log_odds,
                                                    mu_2=0,
                                                    stdev=stdev,
                                                    known_stdev=True,
                                                    alpha=alpha,
                                                    beta=beta,
                                                    power=power,
                                                    margin=margin,
                                                    hypothesis=hypothesis)
Example #10
0
    def __init__(self, delta=None, l=None, stdev_11=None, stdev_tt=None,
                 stdev_tr=None, stdev_bt=None, stdev_br=None, rho=None,
                 theta_PBE=None, alpha=None, power=None, beta=None):

        if delta is None:
            delta = 0
        else:
            is_numeric(delta, 'delta')
        self.delta = delta

        is_numeric(l, 'l')
        self.l = l

        is_positive(stdev_11, 'stdev_11')
        self.stdev_11 = stdev_11
        is_positive(stdev_tt, 'stdev_tt')
        self.stdev_tt = stdev_tt
        is_positive(stdev_tr, 'stdev_tr')
        self.stdev_tr = stdev_tr
        is_positive(stdev_bt, 'stdev_bt')
        self.stdev_bt = stdev_bt
        is_positive(stdev_br, 'stdev')
        self.stdev_br = stdev_br

        is_in_0_1(rho, 'rho')
        self.rho = rho

        if theta_PBE is None:
            theta_PBE = 1.74
        else:
            is_positive(theta_PBE, 'theta_PBE')
        self.theta_PBE = theta_PBE

        # Initialize the remaining arguments through the parent.
        super(Population, self).__init__(hypothesis="equivalence",
                                         alpha=alpha, beta=beta, power=power)
Example #11
0
    def __init__(self,
                 n=None,
                 m=None,
                 stdev_1=None,
                 stdev_2=None,
                 similarity_limit=None,
                 hypothesis=None,
                 alpha=None,
                 beta=None,
                 power=None):

        if n is not None:
            if isinstance(n, int):
                self.n = n
            else:
                raise ValueError('`n` should be of type Int.')
        else:
            self.n = None

        if m is not None:
            if isinstance(m, int):
                self.m = m
            else:
                raise ValueError('`m` should be of type Int.')
        else:
            raise ValueError('`m` must be provided.')

        is_positive(stdev_1, 'stdev_1')
        self.stdev_1 = stdev_1
        is_positive(stdev_2, 'stdev_2')
        self.stdev_2 = stdev_2

        # _alpha and _beta are adjusted to be used as cutpoints.
        # alpha and beta are to be used for display
        # We use _beta to prevent floating point errors when beta is passed on
        if hypothesis == 'equality':
            if alpha is not None:
                self._alpha = alpha / 2
            else:
                self._alpha = None
            if power is not None:
                self._beta = 1 - power
            elif beta is not None:
                self._beta = beta
            else:
                self._beta = None
            similarity_limit = 1
            sigma_ratio = stdev_2 / stdev_1
        elif hypothesis == 'superiority':
            if alpha is not None:
                self._alpha = alpha
            else:
                self._alpha = None
            if power is not None:
                self._beta = 1 - power
            elif beta is not None:
                self._beta = beta
            else:
                self._beta = None
            if similarity_limit is None:
                raise ValueError('A similarity_limit must be provided')
            sigma_ratio = stdev_2 / (stdev_1 * similarity_limit)
        elif hypothesis == 'equivalence':
            if alpha is not None:
                self._alpha = 1 - alpha
            else:
                self._alpha = None
            if power is not None:
                self._beta = (power) / 2
            elif beta is not None:
                self._beta = (1 - beta) / 2
            else:
                self._beta = None
            if similarity_limit is None:
                raise ValueError('A similarity_limit must be provided')
            sigma_ratio = stdev_2 / (stdev_1 * similarity_limit)

        self.similarity_limit = similarity_limit
        self.sigma_ratio = sigma_ratio

        # Initialize the remaining arguments through the parent.
        super(VarianceBase, self).__init__(alpha=alpha,
                                           power=power,
                                           beta=beta,
                                           hypothesis=hypothesis)