Example #1
0
def plot_save_ene_ene_spread(slm, savepath, h5plot=True, t_is_z=True):

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'

    t = slm.get_time_array()
    tot_charge = np.sum(slm.get_charge(), axis=1)
    
    avg_gamma = slm.get_proj(pz=1)
    sigma_gamma = np.sqrt(slm.get_proj(pz=2))
    sigma_gamma_per_gamma = np.divide( sigma_gamma, avg_gamma)

    fig_sg = plt.figure()    
    plt.plot(t, sigma_gamma_per_gamma)
    ax = plt.gca()
    if magn_check(sigma_gamma_per_gamma):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)     
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(r'$\sigma_\gamma/\gamma$', fontsize=14) 
    saveas_eps_pdf(fig_sg, savepath, 'sigma_gamma_per_gamma', h5plot=h5plot)                  
    plt.close(fig_sg)


    fig_g = plt.figure()    
    plt.plot(t, avg_gamma)
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(r'$\gamma$', fontsize=14)    
    saveas_eps_pdf(fig_g, savepath, 'avg_gamma', h5plot=h5plot)                  
    plt.close(fig_g)
Example #2
0
def plot_save_slice_exkurtosis_lines(slm, savepath, time = None, axdir='x', h5plot=True):

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        if axdir == 'y':
            var_xy = slm.get(y=2)[i,:]
            var_xy_nonzero_idx = np.nonzero(var_xy)[0]           
            exkurtosis_xy = np.divide(  slm.get(y=4)[i,var_xy_nonzero_idx],\
                                        np.power(var_xy[var_xy_nonzero_idx],2)) - 3
            exkurtosis_xy_lab = r'$\left \langle y^4 \right\rangle -3$'
            exkurtosis_xy_savename = 'exkurtosis_y'
            
            var_pxy = slm.get(py=2)[i,:]
            var_pxy_nonzero_idx = np.nonzero(var_pxy)[0]
            exkurtosis_pxy = np.divide( slm.get(py=4)[i,var_pxy_nonzero_idx],\
                                        np.power(var_pxy[var_pxy_nonzero_idx],2)) - 3
            exkurtosis_pxy_lab = r'$\left \langle p_y^4/\sigma_{py}^4 \right\rangle -3$'
            exkurtosis_pxy_savename = 'exkurtosis_py'

        else: 
            # xdir == 'x' or xdir == 'r'
            var_xy = slm.get(x=2)[i,:]
            var_xy_nonzero_idx = np.nonzero(var_xy)[0]
            exkurtosis_xy = np.divide(  slm.get(x=4)[i,var_xy_nonzero_idx],\
                                        np.power(var_xy[var_xy_nonzero_idx],2)) - 3
            exkurtosis_xy_lab = r'$\left \langle x^4/\sigma_x^4 \right\rangle - 3$'
            exkurtosis_xy_savename = 'exkurtosis_x'
            
            var_pxy = slm.get(px=2)[i,:]
            var_pxy_nonzero_idx = np.nonzero(var_pxy)[0]
            exkurtosis_pxy = np.divide( slm.get(px=4)[i,var_pxy_nonzero_idx],\
                                        np.power(var_pxy[var_pxy_nonzero_idx],2)) - 3
            exkurtosis_pxy_lab = r'$\left \langle p_x^4/\sigma_{px}^4 \right\rangle -3$'
            exkurtosis_pxy_savename = 'exkurtosis_px'
            # Also define labels and savenames here!   

        fig_exkurtosis_xy = plt.figure()
        plt.plot( slm.get_zeta_array()[var_xy_nonzero_idx],
                  exkurtosis_xy)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(exkurtosis_xy_lab, fontsize=14)     
        saveas_eps_pdf(fig_exkurtosis_xy, savepath, ('%s_time_%0.1f' % (exkurtosis_xy_savename, slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig_exkurtosis_xy)


        fig_exkurtosis_pxy = plt.figure()
        plt.plot( slm.get_zeta_array()[var_pxy_nonzero_idx],
                  exkurtosis_pxy)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(exkurtosis_pxy_lab, fontsize=14)     
        saveas_eps_pdf(fig_exkurtosis_pxy, savepath, ('%s_time_%0.1f' % (exkurtosis_pxy_savename, slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig_exkurtosis_pxy)
Example #3
0
def oneD(raw, args):

    appstr = ''

    psv, xlabel, savename = get_props(raw, args.psv)

    if args.nbins == None:
        nbins = np.int(10 + np.power(np.log(raw.get_npart()), 3))
    else:
        nbins = args.nbins

    hist, bin_edges = np.histogram( psv,\
                                    bins=nbins,\
                                    weights=raw.get('q'),\
                                    density=True,\
                                    range=args.range)
    x_array = bin_edges[0:-1] + (bin_edges[1] - bin_edges[0]) / 2

    if args.psv == 'r':
        ## Scaling dr with 1/r
        # rmax = np.max(psv)
        # r_range = [0, rmax]
        # r_lsp = np.linspace(0,rmax,nbins)
        # lsp_centers = r_lsp[:-1] + np.diff(r_lsp)
        # dr_unnormed = np.divide(np.diff(r_lsp),lsp_centers)
        # dr_normed =  rmax * dr_unnormed/np.sum(dr_unnormed)
        # r_bin_edges = np.insert(np.cumsum(dr_normed),0,0)
        #hist, bin_edges = np.histogram(psv,bins=r_bin_edges,weights=raw.get('q'),density=True,range=args.range)

        ## Scaling number of hits with 1/r
        hist = np.divide(hist, x_array) / (2 * math.pi)

    fig = plt.figure(figsize=(6, 5))
    plt.plot(x_array, hist)
    ax = plt.gca()
    ax.set_xlabel(xlabel, fontsize=14)
    plt.gcf().subplots_adjust(left=0.15, bottom=0.15)

    if args.part_selection_criterion != '' or args.tagfile_in != None:
        appstr += '_sel'

    raw.read_attrs()
    timestamp = '_%08.1f' % (raw.get_time())
    savename += get_zeta_range_str(args.zeta_range)  \
                + appstr \
                + timestamp

    if args.file_format == 'png':
        saveas_png(fig, args.savepath, savename, verbose=True)
    else:
        saveas_eps_pdf(fig,
                       args.savepath,
                       savename,
                       h5plot=True,
                       verbose=True,
                       fformat=args.file_format)
    plt.close(fig)
Example #4
0
def plot_save_slice_rms_lines(slm, savepath, time = None, axdir='x', h5plot=True):

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        if axdir == 'x':
            sigma_xy = np.sqrt(slm.get(x=2)[i,:])
            sigma_xy_lab = r'$k_p \sigma_{x}$'
            sigma_xy_savename = 'sigma_x'
            sigma_pxy = np.sqrt(slm.get(px=2)[i,:])
            sigma_pxy_lab = r'$\sigma_{p_x}/mc$'
            sigma_pxy_savename = 'sigma_px'
            # Also define labels and savenames here!    
        elif axdir == 'y':
            sigma_xy = np.sqrt(slm.get(y=2)[i,:])
            sigma_xy_lab = r'$k_p \sigma_{y}$'
            sigma_xy_savename = 'sigma_y'
            sigma_pxy = np.sqrt(slm.get(py=2)[i,:])
            sigma_pxy_lab = r'$\sigma_{p_y}/mc$'
            sigma_pxy_savename = 'sigma_py'
        elif axdir == 'r':
            sigma_xy = np.sqrt(slm.get(x=2)[i,:] + slm.get(y=2)[i,:])
            sigma_xy_lab = r'$k_p \sigma_{r}$'
            sigma_xy_savename = 'sigma_r'
            sigma_pxy = np.sqrt(slm.get(px=2)[i,:] + slm.get(py=2)[i,:])
            sigma_pxy_lab = r'$(\sigma_{p_x}^2+\sigma_{p_y}^2)^{1/2}/mc$'
            sigma_pxy_savename = 'sigma_pr'            

        fig_sigma_xy = plt.figure()
        plt.plot( slm.get_zeta_array(),
                  sigma_xy)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(sigma_xy_lab, fontsize=14)     
        saveas_eps_pdf(fig_sigma_xy, savepath, ('%s_time_%0.1f' % (sigma_xy_savename, slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig_sigma_xy)


        fig_sigma_pxy = plt.figure()
        plt.plot( slm.get_zeta_array(),
                  sigma_pxy)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(sigma_pxy_lab, fontsize=14)     
        saveas_eps_pdf(fig_sigma_pxy, savepath, ('%s_time_%0.1f' % (sigma_pxy_savename, slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig_sigma_pxy)
Example #5
0
def plot_curr_profile(slm, savepath, time = None, h5plot=True, t_is_z=True):
    dzeta = abs(slm.get_zeta_array()[1] - slm.get_zeta_array()[0]);
    curr = slm.get_charge() / dzeta

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'

    # print('Q = %0.3e' % (np.sum(curr) * dzeta ))

    # I_A = 4 * pi * epsilon_0 * m * c^3 / e
    # [curr] = epsilon_0 * m * c^3 / e
    # curr * 4 * pi = I_b/I_A
    Ib_per_IA = curr/(4 * math.pi)

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        fig = plt.figure()
        plt.plot(slm.get_zeta_array(), Ib_per_IA[i,:])
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(r'$I_{b}/I_A$', fontsize=14)
        saveas_eps_pdf(fig, savepath, ('Ib_time_%0.1f' % (slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig)    


    figIb = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            Ib_per_IA,
                            cmap=cm.Greys,
                            vmin=0, 
                            vmax=np.amax(abs(Ib_per_IA)))
    cbar = figIb.colorbar(cax)   
    cbar.ax.set_ylabel('$I_b/I_A$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14) 
    saveas_png(figIb, savepath, 'Ib')
    plt.close(figIb)
Example #6
0
def plot_save_slice_ene(slm, savepath, time = None, h5plot=True, t_is_z=True):

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'
    
    gamma = np.sqrt( 1 + np.power(slm.get(pz=1),2) 
                       + np.power(slm.get(px=1),2)
                       + np.power(slm.get(py=1),2) )

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        fig = plt.figure()
        plt.plot(slm.get_zeta_array(), gamma[i,:])
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(r'$\gamma$', fontsize=14)
        saveas_eps_pdf(fig, savepath, ('gamma_time_%0.1f' % (slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig)    



    figG = plt.figure()
    cax = plt.pcolormesh( slm.get_zeta_array(),
                          slm.get_time_array(),
                          gamma,
                          cmap=cm.GnBu,
                          vmin=np.amin(gamma), vmax=np.amax(gamma))
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14)    
    cbar = figG.colorbar( cax )
    cbar.ax.set_ylabel(r'$\gamma$', fontsize=14)
    saveas_png(figG, savepath, 'gamma')
    plt.close(figG)    
Example #7
0
def plot_xterms(slm, savepath, time = None, h5plot=True, t_is_z=True):
    dzeta = abs(slm.get_zeta_array()[1] - slm.get_zeta_array()[0]);
    curr = slm.get_charge() / dzeta

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        fig = plt.figure()
        plt.plot(slm.get_zeta_array(), slm.get(x=1,y=1)[i,:])
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(r'$<xy>$', fontsize=14)
        saveas_eps_pdf(fig, savepath, ('xy_%0.1f' % (slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig)    
Example #8
0
def plot_save_slice_quad_corr_lines(slm, savepath, time = None, axdir='x', h5plot=True):

    if time == None:
        tidx = [0,-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    for i in tidx:
        if axdir == 'y':
            var_xy = slm.get(y=2)[i,:]
            var_pxy = slm.get(py=2)[i,:]
            nonzero_idx = np.nonzero(np.multiply(var_xy, var_pxy))[0]
            quad_corr_xy = np.divide(  slm.get(y=2,py=2)[i,nonzero_idx],\
                                        np.multiply(var_xy[nonzero_idx],var_pxy[nonzero_idx]) ) - 1.0
            quad_corr_xy_lab = r'$\left \langle y^2  p_y^2\right\rangle/(\sigma_y^2\sigma_{p_y}^2) - 1$'
            quad_corr_xy_savename = 'quad_corr_y'
  
        else: 
            # axdir == 'x' or axdir == 'r'
            var_xy = slm.get(x=2)[i,:]
            var_pxy = slm.get(px=2)[i,:]
            nonzero_idx = np.nonzero(np.multiply(var_xy, var_pxy))[0]
            quad_corr_xy = np.divide(  slm.get(x=2,px=2)[i,nonzero_idx],\
                                        np.multiply(var_xy[nonzero_idx],var_pxy[nonzero_idx]) ) - 1.0
            quad_corr_xy_lab = r'$\left \langle x^2  p_x^2\right\rangle/(\sigma_x^2\sigma_{p_x}^2) - 1$'
            quad_corr_xy_savename = 'quad_corr_x'


        fig_quad_corr_xy = plt.figure()
        plt.plot( slm.get_zeta_array()[nonzero_idx],
                  quad_corr_xy)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(quad_corr_xy_lab, fontsize=14)     
        saveas_eps_pdf(fig_quad_corr_xy, savepath, ('%s_time_%0.1f' % (quad_corr_xy_savename, slm.get_time_array()[i])), h5plot=h5plot)
        plt.close(fig_quad_corr_xy)
Example #9
0
def adiabatic_matching_plots(savepath, z_array, emittance, gamma):
    log_rel_emittance = np.log(emittance/emittance[0])
    kbeta0 = np.power(2*gamma,-1/2)

    dz_per_dgamma = np.divide(np.gradient(z_array),np.gradient(gamma))
    dlog_rel_emittance_per_dgamma = np.divide(np.gradient(log_rel_emittance),np.gradient(gamma))

    eta = np.multiply( np.divide(dz_per_dgamma,kbeta0), dlog_rel_emittance_per_dgamma)

    fig_eta = plt.figure()    
    plt.plot(gamma, eta)
    ax = plt.gca()
    ax.set_xlabel(r'$\overline{\gamma}$', fontsize=14) 
    ax.set_ylabel(r'$\eta$', fontsize=14)
    #ylim = ax.get_ylim()
    ax.set_ylim([0, 1e-2])
    if magn_check(eta):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)  
    
    saveas_eps_pdf(fig_eta, savepath, 'eta', h5plot=True)                  
    plt.close(fig_eta)
Example #10
0
def density_inversion(r_nb,
                      nb,
                      r_psi,
                      psi,
                      zeta_pos,
                      savepath='./plots/equilib',
                      ifplot=True):

    psi_norm = psi - psi[0]

    psi_interp = np.interp(r_nb, r_psi, psi_norm)
    dnb = np.diff(nb)
    dpsi = np.diff(psi_interp)

    x = psi_interp[1:]
    F = -1 * np.divide(dnb, dpsi) / (2 * math.pi)

    popt, pcov = curve_fit(exp_func, x, F)

    if ifplot:
        mkdirs_if_nexist(savepath)

        fig = plt.figure()
        plt.plot(r_nb, nb)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p r$', fontsize=14)
        ax.set_ylabel(r'$n_b/n_0$', fontsize=14)
        saveas_eps_pdf(fig, savepath, 'nb_zeta_%0.2f' % zeta_pos)
        plt.close(fig)

        fig = plt.figure()
        plt.plot(r_nb[:-1], np.divide(dnb, np.diff(r_nb)))
        ax = plt.gca()
        ax.set_xlabel(r'$k_p r$', fontsize=14)
        ax.set_ylabel(r'$d(n_b/n_0)/(k_p dr)$', fontsize=14)
        saveas_eps_pdf(fig, savepath, 'dnb_dr_zeta_%0.2f' % zeta_pos)
        plt.close(fig)

        fig = plt.figure()
        plt.plot(r_nb[:-1], np.divide(dpsi, np.diff(r_nb)))
        ax = plt.gca()
        ax.set_xlabel(r'$k_p r$', fontsize=14)
        ax.set_ylabel(r'$d(e\psi/mc^2)/(k_p dr)$', fontsize=14)
        saveas_eps_pdf(fig, savepath, 'dpsi_dr_zeta_%0.2f' % zeta_pos)
        plt.close(fig)

        fig = plt.figure()
        plt.plot(psi_norm, r_nb)
        ax = plt.gca()
        ax.set_ylabel(r'$k_p r$', fontsize=14)
        ax.set_xlabel(r'$e\psi/mc^2$', fontsize=14)
        saveas_eps_pdf(fig, savepath, 'r_vs_psi_zeta_%0.2f' % zeta_pos)
        plt.close(fig)

        fig = plt.figure()
        plt.plot(r_nb, psi_norm)
        ax = plt.gca()
        ax.set_xlabel(r'$k_p r$', fontsize=14)
        ax.set_ylabel(r'$e\psi/mc^2$', fontsize=14)
        saveas_eps_pdf(fig, savepath, 'psi_zeta_%0.2f' % zeta_pos)
        plt.close(fig)

        fig = plt.figure()
        plt.plot(x, F, '-', label=r'F(x)')
        plt.plot(x,
                 exp_func(x, *popt),
                 '--',
                 label=r'fit: $%0.2f \cdot exp(-%0.2f \cdot x)$' % tuple(popt))
        ax = plt.gca()
        ax.set_xlabel(r'$x$', fontsize=14)
        ax.set_ylabel(r'$F$', fontsize=14)
        plt.legend(frameon=False)
        saveas_eps_pdf(fig, savepath, 'F_zeta_%0.2f' % zeta_pos)
        plt.close(fig)
    return x, F
Example #11
0
def cmp_plot_Wr(args, g3d, plasma, beam):

    if args.zeta_pos == None:
        zeta_pos_list = [0.0]
    else:
        zeta_pos_list = args.zeta_pos

    x_array = g3d.get_x_arr(1)

    Nsimlines = len(zeta_pos_list)
    Nzeta = g3d.get_nx(1)

    Wr_sim = np.zeros((Nzeta, Nsimlines))
    Wr_theo = np.zeros((Nzeta, Nsimlines))

    for i in range(0, Nsimlines):
        zeta_pos = zeta_pos_list[i]
        Wr_sim[:, i] = g3d.read(x0=zeta_pos, x2=0.0)
        Wr_theo[:, i] = lin_Wr_theo(plasma=plasma,
                                    beam=beam,
                                    x_array=x_array,
                                    zeta_pos=zeta_pos)

    cmap = cm.tab10

    fig = plt.figure(num=None,
                     figsize=(9, 7),
                     dpi=80,
                     facecolor='w',
                     edgecolor='k')
    for i in range(0, Nsimlines):
        zeta_pos = zeta_pos_list[i]
        if args.rel_to_hom:
            Wr_sim_vals = Wr_sim[:, i] - x_array * 0.5
            Wr_theo_vals = Wr_theo[:, i] - x_array * 0.5
            ylab = r'$W_r/E_0 - r/2$'
        else:
            Wr_sim_vals = Wr_sim[:, i]
            Wr_theo_vals = Wr_theo[:, i]
            ylab = r'$W_r/E_0$'

        label_sim = r'PIC: $k_p \zeta = %0.1f$' % zeta_pos
        ax_sim = plt.plot(x_array,
                          Wr_sim_vals,
                          linestyle='-',
                          color=cmap(i),
                          label=label_sim)

        label_theo = r'Theo: $k_p \zeta = %0.1f$' % zeta_pos
        ax_theo = plt.plot(x_array,
                           Wr_theo_vals,
                           linestyle='--',
                           color=cmap(i),
                           label=label_theo)
    if not args.rel_to_hom:
        label_half = r'$k_p r/2$'
        ax_half = plt.plot(x_array,
                           x_array * 0.5,
                           linestyle='-',
                           label=label_half,
                           color=[0.5, 0.5, 0.5])

    ax = plt.gca()
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(flip(handles, 2), flip(labels, 2), ncol=2)

    if args.rmax != None:
        xmax = args.rmax
        ymax = 1.2 * np.amax(Wr_sim_vals[np.logical_and(
            x_array < xmax, x_array > 0.0)])
    else:
        max_idx = np.where(Wr_sim_vals == np.amax(Wr_sim_vals))[0][0]
        xmax = x_array[max_idx]
        ymax = 1.2 * np.amax(Wr_sim_vals)
    ax.set_xlim([0, xmax])
    ax.set_ylim([0, ymax])
    ax.set_ylabel(ylab, fontsize=14)
    ax.set_xlabel(r'$k_p r$', fontsize=14)

    if not (-3.0 < math.log(np.max(abs(Wr_sim)), 10) < 3.0):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)

    filesuffix = '_t_%06.f' % (np.floor(g3d.get_time()))
    fileprefix = 'Wr_' + 'zeta_%0.1f' % zeta_pos
    saveformat = 'pdf'
    savepath = args.savepath

    savename = fileprefix + filesuffix + '.' + saveformat

    saveas_eps_pdf(fig,
                   savepath,
                   savename,
                   h5plot=args.h5plot,
                   fformat=saveformat)

    plt.close(fig)
Example #12
0
def plot_save_slice_ene_spread(slm, savepath, h5plot=True, time=None, zeta_pos=None, t_is_z=True):

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'
    
    sigma_gamma_per_gamma = np.divide( np.sqrt( slm.get(pz=2) ),slm.get(pz=1))

    if time == None:
        time = slm.get_time_array()[-1]
        tidx = [-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    if len(tidx) == 1:
        time = [time]

    for i in range(0,len(tidx)):
        sig_gam_per_gam_savename = 'sigma_gamma_per_gamma_time_%0.2f' % time[i]
        sig_gam_per_gam_ylab = r'$\sigma_{\gamma}/\gamma(t=%0.1f)$' % time[i]
        
        fig_sig_gam_per_gam = plt.figure()
        plt.plot(slm.get_zeta_array(), sigma_gamma_per_gamma[tidx[i],:]  ) #/ 
        # np.mean(np.sqrt(1 + np.power(slm.get(px=1)[tidx[i],:],2)
        # + np.power(slm.get(py=1)[tidx[i],:],2)
        # + np.power(slm.get(pz=1)[tidx[i],:],2) ))  )
        ax = plt.gca()
        ymin, ymax = ax.get_ylim()
        if ymin > 0 and ymax > 0:
            plt.ylim(0, ymax*1.2)
        elif ymin < 0 and ymax < 0:
            plt.ylim(ymin*1.2, 0)        
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(sig_gam_per_gam_ylab, fontsize=14)
        saveas_eps_pdf(fig_sig_gam_per_gam, savepath, sig_gam_per_gam_savename, h5plot=h5plot)
        plt.close(fig_sig_gam_per_gam)


    figsigma_gamma_per_gamma = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            sigma_gamma_per_gamma,
                            cmap=cm.GnBu,
                            vmin=np.amin(abs(sigma_gamma_per_gamma)), 
                            vmax=np.amax(abs(sigma_gamma_per_gamma)))
    cbar = figsigma_gamma_per_gamma.colorbar(cax)   
    cbar.ax.set_ylabel(r'$\sigma_{\gamma} / \gamma$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14) 
    saveas_png(figsigma_gamma_per_gamma, savepath, 'sigma_gamma_per_gamma')
    plt.close(figsigma_gamma_per_gamma)



    figXb0 = plt.figure()
    plt.plot(slm.get_zeta_array(), sigma_gamma_per_gamma[0,:])
    ax = plt.gca()
    ymin, ymax = ax.get_ylim()
    if ymin > 0 and ymax > 0:
        plt.ylim(0, ymax*1.2)
    elif ymin < 0 and ymax < 0:
        plt.ylim(ymin*1.2, 0)        
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(r'$\sigma_{\gamma} / \gamma$', fontsize=14)
    saveas_eps_pdf(figXb0, savepath, 'sigma_gamma_per_gamma_time_0', h5plot=h5plot)
    plt.close(figXb0)


    if zeta_pos != None:
        zetaidx = [(np.abs(slm.get_zeta_array() - zeta_pos)).argmin()]
        sg_per_g_zeta_savename = 'sigma_gamma_per_gamma_zeta_%0.2f' % zeta_pos
    # 
        figsigma_gamma_per_gamma_zetapos = plt.figure()
        plt.plot(slm.get_time_array(), sigma_gamma_per_gamma[:,zetaidx])
        ax = plt.gca()
        ax.set_xlabel(xlabel_str, fontsize=14)
        ax.set_ylabel(r'$\sigma_{\gamma} / \gamma$', fontsize=14)
        if magn_check(sigma_gamma_per_gamma[:,zetaidx]):    
            ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
            plt.gcf().subplots_adjust(left=0.18)
        else:
            plt.gcf().subplots_adjust(left=0.15)
        saveas_eps_pdf(figsigma_gamma_per_gamma_zetapos, savepath, sg_per_g_zeta_savename, h5plot=h5plot)    
        plt.close(figsigma_gamma_per_gamma_zetapos)
Example #13
0
def plot_save_slice_centroids(slm, savepath, h5plot=True, time=None, zeta_pos=None, t_is_z=True):

    if t_is_z:
        xlabel_str = r'$k_p z$'
    else:
        xlabel_str = r'$\omega_p t$'

    Xb0_for_norm = np.ones(slm.get(x=1)[0,:].shape)
    Yb0_for_norm = np.ones(slm.get(y=1)[0,:].shape)
    for i in range(0,len(slm.get_zeta_array())):
        if (slm.get(x=1)[0,i] != 0.0):
            Xb0_for_norm[i] = slm.get(x=1)[0,i]
            Yb0_for_norm[i] = slm.get(y=1)[0,i]

    if time == None:
        time = slm.get_time_array()[-1]
        tidx = [-1];
    else:
        tidx = [(np.abs(slm.get_time_array() - time)).argmin()]

    if len(tidx) == 1:
        time = [time]

    for i in range(0,len(tidx)):
        Xb_lout_savename = 'Xb_time_%0.2f' % time[i]
        Yb_lout_savename = 'Yb_time_%0.2f' % time[i] 
        Xb_lout_ylab = r'$k_p X_{b}(t=%0.1f)$' % time[i]
        Yb_lout_ylab = r'$k_p Y_{b}(t=%0.1f)$' % time[i]

        figXb_lout = plt.figure()
        plt.plot(slm.get_zeta_array(), slm.get(x=1)[tidx[i],:])
        ax = plt.gca()
        ymin, ymax = ax.get_ylim()
        if ymin > 0 and ymax > 0:
            plt.ylim(0, ymax*1.2)
        elif ymin < 0 and ymax < 0:
            plt.ylim(ymin*1.2, 0)        
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(Xb_lout_ylab, fontsize=14)
        saveas_eps_pdf(figXb_lout, savepath, Xb_lout_savename, h5plot=h5plot)
        plt.close(figXb_lout)

        figYb_lout = plt.figure()
        plt.plot(slm.get_zeta_array(), slm.get(y=1)[tidx[i],:])
        ax = plt.gca()
        ymin, ymax = ax.get_ylim()
        if ymin > 0 and ymax > 0:
            plt.ylim(0, ymax*1.2)
        elif ymin < 0 and ymax < 0:
            plt.ylim(ymin*1.2, 0)    
        ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
        ax.set_ylabel(Yb_lout_ylab, fontsize=14)  
        saveas_eps_pdf(figYb_lout, savepath, Yb_lout_savename, h5plot=h5plot)
        plt.close(figYb_lout)

    Xb_norm = np.zeros( slm.get(x=1).shape )
    Yb_norm = np.zeros( slm.get(y=1).shape )
#    zeta_hseed = np.min(slm.get_zeta_array())
#    idx_hseed = (np.abs(slm.get_zeta_array()-zeta_hseed)).argmin()

    for i in range(0,len(slm.get_zeta_array())):
#        if (slm.get_zeta_array()[i] <= zeta_hseed):
        Xb_norm[:,i] = np.absolute( slm.get(x=1)[:,i]/Xb0_for_norm[i] )
        Yb_norm[:,i] = np.absolute( slm.get(y=1)[:,i]/Yb0_for_norm[i] )

    figXb = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            slm.get(x=1),
                            cmap=cm.PuOr,
                            vmin=-np.amax(abs(slm.get(x=1))), 
                            vmax=np.amax(abs(slm.get(x=1))))
    cbar = figXb.colorbar(cax)   
    cbar.ax.set_ylabel('$k_p X_b$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14) 
    saveas_png(figXb, savepath, 'Xb')
    plt.close(figXb)

    figYb = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            slm.get(y=1),
                            cmap=cm.PuOr,
                            vmin=-np.amax(abs(slm.get(y=1))), 
                            vmax=np.amax(abs(slm.get(y=1))))
    cbar = figYb.colorbar(cax)
    cbar.ax.set_ylabel('$k_p Y_b$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14)     
    saveas_png(figYb, savepath, 'Yb')
    plt.close(figYb)

    figXbnorm = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            Xb_norm,
                            cmap=cm.Blues,
                            vmin=0, 
                            vmax=np.amax(Xb_norm))
    cbar = figXbnorm.colorbar(cax)
    cbar.ax.set_ylabel('$|X_b/X_{b,0}|$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14)  
    saveas_png(figXbnorm, savepath, 'Xb_rel')
    plt.close(figXbnorm)

    figYbnorm = plt.figure()
    cax = plt.pcolormesh(   slm.get_zeta_array(),
                            slm.get_time_array(),
                            Yb_norm,
                            cmap=cm.Blues,
                            vmin=0, 
                            vmax=np.amax(Yb_norm))
    cbar = figYbnorm.colorbar(cax)
    cbar.ax.set_ylabel('$|Y_b/Y_{b,0}|$', fontsize=14)
    ax = plt.gca()
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(xlabel_str, fontsize=14)
    saveas_png(figYbnorm, savepath, 'Yb_rel')
    plt.close(figYbnorm)

    figXb0 = plt.figure()
    plt.plot(slm.get_zeta_array(), slm.get(x=1)[0,:])
    ax = plt.gca()
    ymin, ymax = ax.get_ylim()
    if ymin > 0 and ymax > 0:
        plt.ylim(0, ymax*1.2)
    elif ymin < 0 and ymax < 0:
        plt.ylim(ymin*1.2, 0)        
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(r'$k_p X_{b,0}$', fontsize=14)
    saveas_eps_pdf(figXb0, savepath, 'Xb0', h5plot=h5plot)
    plt.close(figXb0)

    figYb0 = plt.figure()
    plt.plot(slm.get_zeta_array(), slm.get(y=1)[0,:])
    ax = plt.gca()
    ymin, ymax = ax.get_ylim()
    if ymin > 0 and ymax > 0:
        plt.ylim(0, ymax*1.2)
    elif ymin < 0 and ymax < 0:
        plt.ylim(ymin*1.2, 0)    
    ax.set_xlabel(r'$k_p \zeta$', fontsize=14)
    ax.set_ylabel(r'$k_p Y_{b,0}$', fontsize=14)     
    saveas_eps_pdf(figYb0, savepath, 'Yb0', h5plot=h5plot)
    plt.close(figYb0)

    if zeta_pos != None:
        zetaidx = [(np.abs(slm.get_zeta_array() - zeta_pos)).argmin()]
        Xb_savename = 'Xb_zeta_%0.2f' % zeta_pos
        Yb_savename = 'Yb_zeta_%0.2f' % zeta_pos 
    else:
        zetaidx = 0
        Xb_savename = 'Xb_tail'
        Yb_savename = 'Yb_tail'

    figXbtail = plt.figure()
    plt.plot(slm.get_time_array(), slm.get(x=1)[:,zetaidx])
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14)
    ax.set_ylabel(r'$k_p X_{b,\mathrm{tail}}$', fontsize=14)
    if magn_check(slm.get(x=1)[:,zetaidx]):    
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)
    saveas_eps_pdf(figXbtail, savepath, Xb_savename, h5plot=h5plot)    
    plt.close(figXbtail)

    figYbtail = plt.figure()
    plt.plot(slm.get_time_array(), slm.get(y=1)[:,zetaidx])
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14)
    ax.set_ylabel(r'$k_p Y_{b,\mathrm{tail}}$', fontsize=14)
    if magn_check(slm.get(y=1)[:,zetaidx]):    
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)    
    saveas_eps_pdf(figYbtail, savepath, Yb_savename, h5plot=h5plot)   
    plt.close(figYbtail)  
Example #14
0
def plot_save_proj_rms(slm, savepath, axdir='x', h5plot=True, verbose=True, t_is_z=True, versus_gamma=False):
    
    tot_charge = np.sum(slm.get_charge(), axis=1)

    if axdir == 'x':
        xsq = slm.get_proj(x=2)
        psq = slm.get_proj(px=2)
        xp = slm.get_proj(x=1,px=1)
        
        emittance_all_slices = np.sqrt( np.multiply(slm.get(x=2), slm.get(px=2)) - np.power(slm.get(x=1,px=1),2) )
        
        sigma_xyr_lab = r'$k_p\sigma_x$'
        sigma_xyr_savename = 'sigma_x_proj'
        
        sigma_pxyr_lab = r'$\sigma_{p_x}/m_e c$'
        sigma_pxyr_savename = 'sigma_px_proj'
        
        corr_xy_lab = r'$ k_p \left \langle x\,p_x \right\rangle/m_e c$'
        corr_xy_savename = 'xpx_proj'
        
        epsilon_xy_proj_lab = r'$k_p \epsilon_x$'
        epsilon_xy_proj_savename = 'emittance_x_proj'   

        epsilon_xy_sl_lab = r'$k_p \epsilon_{x,\mathrm{sliced}}$'
        epsilon_xy_sl_savename = 'emittance_x_sliced' 


    elif axdir == 'y':
        xsq = slm.get_proj(y=2)
        psq = slm.get_proj(py=2)
        xp = slm.get_proj(y=1,py=1)
        
        emittance_all_slices = np.sqrt( np.multiply(slm.get(y=2), slm.get(py=2)) - np.power(slm.get(y=1,py=1),2) )
        
        sigma_xyr_lab = r'$k_p\sigma_y$'
        sigma_xyr_savename = 'sigma_y_proj'                
        
        sigma_pxyr_lab = r'$\sigma_{p_y}/m_e c$'
        sigma_pxyr_savename = 'sigma_py_proj'
        
        corr_xy_lab = r'$ k_p \left \langle y\,p_y \right\rangle/m_e c$'
        corr_xy_savename = 'ypy_proj'

        epsilon_xy_proj_lab = r'$k_p \epsilon_y$'
        epsilon_xy_proj_savename = 'emittance_y_proj'

        epsilon_xy_sl_lab = r'$k_p \epsilon_{y,\mathrm{sliced}}$'
        epsilon_xy_sl_savename = 'emittance_y_sliced'         

    elif axdir == 'r':
        xavg = slm.project(slm.get(x=1) + slm.get(y=1))
        pavg = slm.project(slm.get(px=1) + slm.get(py=1))

        xsq_noncentral = slm.project(slm.get(x=2) + slm.get(y=2) \
            + np.power(slm.get(x=1),2) + np.power(slm.get(y=1),2))
        psq_noncentral = slm.project(slm.get(px=2) \
            + slm.get(py=2) + np.power(slm.get(px=1),2) + np.power(slm.get(py=1),2))
        xp_noncentral = slm.project(slm.get(x=1,px=1) + slm.get(y=1,py=1) \
            + np.multiply(slm.get(x=1),slm.get(px=1)) + np.multiply(slm.get(y=1),slm.get(py=1)))

        xsq = xsq_noncentral - np.pow(xavg,2)
        psq = psq_noncentral - np.pow(pavg,2)
        xp = xp_noncentral = np.multiply(xavg,pavg)

        emittance_all_slices = np.sqrt( np.multiply(slm.get(x=2), slm.get(px=2)) - np.power(slm.get(x=1,px=1),2) + \
                np.multiply(slm.get(y=2), slm.get(py=2)) - np.power(slm.get(y=1,py=1),2) )
        
        sigma_xyr_lab = r'$k_p\sigma_r$'
        sigma_xyr_savename = 'sigma_r_proj'                
        
        sigma_pxyr_lab = r'$(\sigma_{p_x}^2 + \sigma_{p_y}^2)^{1/2}/m_e c$'
        sigma_pxyr_savename = 'sigma_pr_proj'
        
        corr_xy_lab = r'$ k_p (\left \langle x\,p_x \right\rangle + \left \langle y\,p_y \right\rangle)/m_e c$'
        corr_xy_savename = 'xpx_ypy_proj'

        epsilon_xy_proj_lab = r'$k_p \epsilon_r$'
        epsilon_xy_proj_savename = 'emittance_r_proj'

        epsilon_xy_sl_lab = r'$k_p \epsilon_{r,\mathrm{sliced}}$'
        epsilon_xy_sl_savename = 'emittance_r_sliced' 

    # Calculate emittance
    emittance_sliced = slm.project(emittance_all_slices)
    emittance_proj = np.sqrt(np.multiply(xsq,psq)-np.power(xp,2))

    if versus_gamma:
        vs_gamma_append_str = '_vs_gamma'
        x_axis_array = slm.get_proj(pz=1)
        xlabel_str = r'$\overline{\gamma}$'
        sigma_xyr_savename += vs_gamma_append_str
        sigma_pxyr_savename += vs_gamma_append_str
        corr_xy_savename += vs_gamma_append_str
        epsilon_xy_proj_savename += vs_gamma_append_str
        epsilon_xy_sl_savename += vs_gamma_append_str
        
        adiabatic_matching_plots(savepath, slm.get_time_array(), emittance_proj, slm.get_proj(pz=1))
    else:
        x_axis_array = slm.get_time_array() 
        if t_is_z:
            xlabel_str = r'$k_p z$'
        else:
            xlabel_str = r'$\omega_p t$'

    fig_sx = plt.figure()    
    plt.plot(x_axis_array, np.sqrt(xsq))
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(sigma_xyr_lab, fontsize=14)
    if magn_check(np.sqrt(xsq)):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15) 
    
    saveas_eps_pdf(fig_sx, savepath, sigma_xyr_savename, h5plot=h5plot)                  
    plt.close(fig_sx)

    fig_sp = plt.figure()    
    plt.plot(x_axis_array, np.sqrt(psq))
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(sigma_pxyr_lab, fontsize=14)
    if magn_check(np.sqrt(psq)):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)  
    
    saveas_eps_pdf(fig_sp, savepath, sigma_pxyr_savename, h5plot=h5plot)                  
    plt.close(fig_sp)


    fig_xp = plt.figure()    
    plt.plot(x_axis_array, xp)
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(corr_xy_lab, fontsize=14)
    if magn_check(xp):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)
    
    saveas_eps_pdf(fig_xp, savepath, corr_xy_savename, h5plot=h5plot)   
    plt.close(fig_xp)


    fig_e = plt.figure()    
    plt.plot(x_axis_array, emittance_proj, label='projected emittance') 
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(epsilon_xy_proj_lab, fontsize=14)
    if magn_check(emittance_proj):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)  
    
    saveas_eps_pdf(fig_e, savepath, epsilon_xy_proj_savename, h5plot=h5plot)   
    plt.close(fig_e)

    fig_esl = plt.figure()    
    plt.plot(x_axis_array, emittance_sliced, label='sliced emittance') 
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(epsilon_xy_sl_lab, fontsize=14)
    if magn_check(emittance_sliced):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)  
    
    saveas_eps_pdf(fig_esl, savepath, epsilon_xy_sl_savename, h5plot=h5plot)   
    plt.close(fig_esl)

    fig_e_slpr = plt.figure()    
    epp = plt.plot(x_axis_array, emittance_proj, label='projected')
    esp = plt.plot(x_axis_array, emittance_sliced, color = epp[0].get_color(), linestyle='--', label='sliced')    
    ax = plt.gca()
    ax.set_xlabel(xlabel_str, fontsize=14) 
    ax.set_ylabel(epsilon_xy_proj_lab, fontsize=14)
    ax.legend()
    if magn_check(emittance_proj):
        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
        plt.gcf().subplots_adjust(left=0.18)
    else:
        plt.gcf().subplots_adjust(left=0.15)  
    
    saveas_eps_pdf(fig_e_slpr, savepath, epsilon_xy_proj_savename + '_sl', h5plot=h5plot)   
    plt.close(fig_e_slpr)
Example #15
0
def main():


    parser = h5plot_parser()
    args = parser.parse_args()

    if args.maketitle:
        ''' Calculating plasma frequency for length '''
        ELECTRON_CHARGE_IN_COUL   =    1.60217657e-19
        ELECTRON_MASS_IN_KG       =    9.10938291e-31
        VAC_PERMIT_FARAD_PER_M    =    8.854187817e-12
        SPEED_OF_LIGHT_IN_M_PER_S =    299792458.0

        omega_p = np.sqrt( args.n0 * (ELECTRON_CHARGE_IN_COUL**2)/ (VAC_PERMIT_FARAD_PER_M * ELECTRON_MASS_IN_KG));
        skin_depth = SPEED_OF_LIGHT_IN_M_PER_S/omega_p
        
        

    if len(sys.argv)==1:
        parser.print_help()
        sys.exit(1)

    saveformat = args.file_format

    h5lp = []

    linestyles = ['-', '--', '-.', ':']
    save_append_str = ''
    type_str = 'comp'

    if args.latexon:
        plt.rc('text', usetex=True)
        plt.rc('font', family='serif') 

    j = 0

    i = 0
    
    
    
    for path in args.paths:
        fig = plt.figure(figsize=(7,5))
        if not os.path.isfile(path):
            print('ERROR: File %s does not exist!' % path)
            sys.exit(1)          
            
        h5lp.append(H5Plot())
        h5lp[i].read(path)
        timestamp = path.split("_")[-1].split(".h5")[0]
        
        if args.data2:
            for files in args.data2:
                if timestamp in files or args.manual:
                    print('Reading second data set...')
                    h5secondlp = H5Plot()
                    h5secondlp.read(files)

        
        
        
        if args.cno == None:
            argcolor = plt.cm.tab20(6)
        else:
            argcolor = plt.cm.tab20(args.cno[0])
        
        j = 0
        for (x, y, label, linestyle, color) in h5lp[i].get_line_plots():
            if args.labels != None:
                save_append_str += '_' + args.labels[i]
                label = args.labels[i]

            if label == '_line0':
                label = path

            if args.latexon:
                if label[0] != '$' or label[-1] != '$':
                    label = r'$\textrm{' + label + '}$'


            if args.abs:
                y = np.abs(y)

            if args.lstyle == None:
                linestyle_code = linestyles[0]
            else:
                linestyle_code = linestyles[args.lstyle[0]]

            
            if args.absylog:
                plt.semilogy( x, y, label=label, linestyle=linestyle_code, color=argcolor, zorder=20)
            else:    
                #plt.plot(x, y, label=label, linestyle=linestyle, color=color)
                plt.plot(x, y, label=label, linestyle=linestyle_code, color=argcolor, zorder=20)      
            

        ax = plt.gca()
        ax.tick_params('y', colors=argcolor)
        plt.gcf().subplots_adjust(left=0.15, bottom=0.15, right=1-0.15)       
        if not (-3.0 < math.log(np.max(abs(y)),10) < 3.0):
            ax.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
            plt.gcf().subplots_adjust(left=0.18) 
        ax2 = ax.twinx()
        
        ''' PLOTTING THE SECOND PLOT '''
        if args.cno == None:
            argcolor = plt.cm.tab20(1)
        else:
            argcolor = plt.cm.tab20(args.cno[1])
        ax2.tick_params('y', colors=argcolor)
        j = 0
        for (x2, y2, label, linestyle, color) in h5secondlp.get_line_plots():
            if args.labels != None:
                save_append_str += '_' + args.labels[i]
                label = args.labels[i]

            if label == '_line0':
                label = path

            if args.latexon:
                if label[0] != '$' or label[-1] != '$':
                    label = r'$\textrm{' + label + '}$'

            if args.abs:
                y2 = np.abs(y2)

            if args.lstyle == None:
                linestyle_code = linestyles[0]
            else:
                linestyle_code = linestyles[args.lstyle[1]]

            
            if args.absy2log:
                plt.semilogy( x2, y2, label=label, linestyle=linestyle_code, color=argcolor, zorder=0)
            else:    
                #plt.plot(x, y, label=label, linestyle=linestyle, color=color)
                plt.plot(x2, y2, label=label, linestyle=linestyle_code, color=argcolor, zorder=0)      
            



        if args.xlim != None:
            ax.set_xlim(args.xlim[0],args.xlim[1])
        if args.ylim != None:
            ax.set_ylim(args.ylim[0],args.ylim[1])
        if args.y2lim != None:
            ax2.set_ylim(args.y2lim[0],args.y2lim[1])
            
        if args.xlab != None:
            xlab = args.xlab
        else:
            xlab = h5lp[0].get_xlab()
    

        if args.ylab != None:
            ylab = args.ylab
        else:
            ylab = []
            ylab.append(h5lp[0].get_ylab())
            ylab.append(h5secondlp.get_ylab())
            
        if args.latexon:
            if xlab[0] != '$' or xlab[-1] != '$':
                        xlab = r'$' + xlab + '$'
                        
                        
        if args.latexon:
            if ylab[0,0] != '$' or ylab[0,-1] != '$':
                        ylab[0] = r'$' + ylab[0] + '$'
                        ylab[1] = r'$' + ylab[1] + '$'

        ax.set_xlabel(xlab, fontsize=14)
        ax.set_ylabel(ylab[0], fontsize=14)
        ax2.set_ylabel(ylab[1], fontsize=14)   
        
        
        ax.set_zorder(ax2.get_zorder()+1) # put ax in front of ax2
        ax.patch.set_visible(False) # hide the 'canvas' 
        # handles, labels = ax.get_legend_handles_labels()
        # #plt.legend(flip(handles, 2), flip(labels, 2), ncol=2)
        # plt.legend(frameon=False)
        #plt.gcf().subplots_adjust(left=0.15, bottom=0.15, right=0.15)       
        if not (-3.0 < math.log(np.max(abs(y2)),10) < 3.0):
            ax2.yaxis.set_major_formatter(FormatStrFormatter('%.1e'))
            plt.gcf().subplots_adjust(right=1-0.18)          
        #plt.show()

        ''' make the title '''
        if args.maketitle:
            time = np.around(float(timestamp))
            distance = time*skin_depth*1e2
            title = 'Time: ' + str(time) + r'$\,\omega_p^{-1}$ ' + '   Distance: ' + str(np.around(distance,2)) + r'$\,$cm'
            plt.title(title)
            
        if args.show:
            plt.show()
            
        spath, fname  = os.path.split(args.paths[0])
        if args.savepath != None:
            spath = args.savepath

        if not args.manual:
            save_name = type_str + '_' + fname + save_append_str + '_' +  timestamp
        else:
            save_name = type_str + '_' + fname + save_append_str
        
        if saveformat==args.file_format:
            saveas_png(fig, spath, save_name, args.dpi)
        else:
            saveas_eps_pdf(fig, savepath=spath, savename=save_name)
        

        
        plt.close(fig)