def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.proteins is not None: align(pangenome=pangenome, proteinFile=args.proteins, output=args.output, tmpdir=args.tmpdir, identity=args.identity, coverage=args.coverage, defrag=args.defrag, cpu=args.cpu, getinfo=args.getinfo, draw_related=args.draw_related) if args.annotation is not None: projectRGP(pangenome, args.annotation, args.output, args.tmpdir, args.identity, args.coverage, args.defrag, args.cpu, args.translation_table, pseudo=args.use_pseudo)
def launch(args): """ main code when launch partition from the command line. """ if args.draw_ICL or args.keep_tmp_files: mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) partition(pangenome, args.tmpdir, args.output, args.force, args.beta, args.max_degree_smoothing, args.free_dispersion, args.chunk_size, args.nb_of_partitions, args.krange, args.ICL_margin, args.draw_ICL, args.cpu, args.seed, args.keep_tmp_files, show_bar=args.show_prog_bars) writePangenome(pangenome, pangenome.file, args.force, show_bar=args.show_prog_bars)
def launch(args): """ launch the clustering step""" pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.clusters is None: clustering(pangenome, args.tmpdir, args.cpu, defrag=not args.no_defrag, code=args.translation_table, coverage=args.coverage, identity=args.identity, mode=args.mode, force=args.force, disable_bar=args.disable_prog_bar) logging.getLogger().info("Done with the clustering") else: readClustering(pangenome, args.clusters, args.infer_singletons, args.force, disable_bar=args.disable_prog_bar) logging.getLogger().info("Done reading the cluster file") writePangenome(pangenome, pangenome.file, args.force, disable_bar=args.disable_prog_bar)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) writeFlatFiles(pangenome, args.output, cpu=args.cpu, soft_core=args.soft_core, dup_margin=args.dup_margin, csv=args.csv, genePA=args.Rtab, gexf=args.gexf, light_gexf=args.light_gexf, projection=args.projection, stats=args.stats, json=args.json, partitions=args.partitions, regions=args.regions, families_tsv=args.families_tsv, all_genes=args.all_genes, all_prot_families=args.all_prot_families, all_gene_families=args.all_gene_families, spots=args.spots, borders=args.borders, compress=args.compress)
def launch(args): pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.spot_graph or args.draw_hotspots: mkOutdir(args.output, args.force) predictHotspots(pangenome, args.output, force=args.force, cpu = args.cpu, spot_graph=args.spot_graph, overlapping_match=args.overlapping_match, set_size=args.set_size, exact_match=args.exact_match_size, draw_hotspot=args.draw_hotspots, interest=args.interest) writePangenome(pangenome, pangenome.file, args.force)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.tile_plot: drawTilePlot(pangenome, args.output, args.nocloud) if args.ucurve: drawUCurve(pangenome, args.output, soft_core = args.soft_core)
def launchSequences(args): checkOptions(args) mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) writeSequenceFiles(pangenome, args.output, fasta=args.fasta, anno=args.anno, soft_core=args.soft_core, regions=args.regions, genes=args.genes, gene_families=args.gene_families, prot_families=args.prot_families, compress=args.compress, disable_bar=args.disable_prog_bar)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) writeFlatFiles(pangenome, args.output, args.cpu, args.soft_core, args.dup_margin, args.csv, args.Rtab, args.gexf, args.light_gexf, args.projection, args.stats, args.json, args.partitions, args.families_tsv, args.all_genes, args.all_prot_families, args.all_gene_families, args.compress)
def launch(args): pangenome = Pangenome() pangenome.addFile(args.pangenome) predictRGP(pangenome, force=args.force, persistent_penalty=args.persistent_penalty, variable_gain=args.variable_gain, min_length=args.min_length, min_score=args.min_score, dup_margin=args.dup_margin, cpu=args.cpu) writePangenome(pangenome, pangenome.file, args.force)
def launchMSA(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) writeMSAFiles(pangenome, args.output, cpu=args.cpu, partition=args.partition, tmpdir=args.tmpdir, source=args.source, force=args.force, show_bar=args.show_prog_bars)
def launch(args): pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.spot_graph: mkOutdir(args.output, args.force) if args.draw_hotspots or args.interest or args.fig_margin or args.priority: logging.getLogger().warning( "Options to draw the spots with the 'ppanggolin spot' subcommand have been deprecated, " "and are now dealt with in a dedicated subcommand 'ppanggolin drawspot'.") predictHotspots(pangenome, args.output, force=args.force, cpu=args.cpu, spot_graph=args.spot_graph, overlapping_match=args.overlapping_match, set_size=args.set_size, exact_match=args.exact_match_size, disable_bar=args.disable_prog_bar) writePangenome(pangenome, pangenome.file, args.force, disable_bar=args.disable_prog_bar)
def launch(args): """ launch the clustering step""" pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.clusters is None: clustering(pangenome, args.tmpdir, args.cpu, args.defrag, args.translation_table, args.coverage, args.identity, args.force) logging.getLogger().info("Done with the clustering") else: readClustering(pangenome, args.clusters, args.infer_singletons, args.force) logging.getLogger().info("Done reading the cluster file") writePangenome(pangenome, pangenome.file, args.force)
def launchSequences(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) checkOptions(args) writeSequenceFiles(pangenome, args.output, fasta=args.fasta, anno=args.anno, cpu=args.cpu, regions=args.regions, genes=args.genes, prot_families=args.prot_families, gene_families=args.gene_families, compress=args.compress, show_bar=args.show_prog_bars)
def launch(args): if not any(x for x in [args.genome_fluidity, args.family_fluidity, args.info_modules, args.all]): raise Exception("You did not indicate which metric you want to compute.") pangenome = Pangenome() pangenome.addFile(args.pangenome) logging.getLogger().debug("Check if one of the metrics was already compute") check_metric(pangenome, all=args.all, genome_fluidity=args.genome_fluidity, family_fluidity=args.family_fluidity, info_modules=args.info_modules, force=args.force) logging.getLogger().info("Metrics computation begin") metrics_dictionary = compute_metrics(pangenome, all=args.all, genome_fluidity=args.genome_fluidity, family_fluidity=args.family_fluidity, info_modules=args.info_modules, disable_bar=args.disable_prog_bar) logging.getLogger().info("Metrics computation done") write_metrics(pangenome, metrics_dictionary, no_print_info=args.no_print_info)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.tile_plot: drawTilePlot(pangenome, args.output, args.nocloud, disable_bar=args.disable_prog_bar) if args.ucurve: drawUCurve(pangenome, args.output, soft_core=args.soft_core, disable_bar=args.disable_prog_bar) if args.spots != '': drawSpots(pangenome=pangenome, output=args.output, spot_list=args.spots, disable_bar=args.disable_prog_bar)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) if args.interest or args.fig_margin or args.label_priority: logging.getLogger().warning( "Options --interest, --fig_margin and --label_priority are deprecated, " "and the actions they defined are now doable directly in the interactive figures " "that are drawn") align(pangenome=pangenome, sequenceFile=args.sequences, output=args.output, tmpdir=args.tmpdir, cpu=args.cpu, identity=args.identity, coverage=args.coverage, no_defrag=args.no_defrag, getinfo=args.getinfo, draw_related=args.draw_related, disable_bar=args.disable_prog_bar)
def launch(args): """ main code when launch partition from the command line. """ mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) makeRarefactionCurve( pangenome = pangenome, output = args.output, tmpdir = args.tmpdir, beta =args.beta, depth = args.depth, minSampling=args.min, maxSampling=args.max, sm_degree=args.max_degree_smoothing, free_dispersion=args.free_dispersion, chunk_size=args.chunk_size, K=args.nb_of_partitions, cpu = args.cpu, seed = args.seed, kestimate=args.reestimate_K, krange = args.krange, soft_core = args.soft_core)
def launch(args): logging.getLogger().debug(f"Ram used at the start : {getCurrentRAM()}") pangenome = Pangenome() pangenome.addFile(args.pangenome) computeNeighborsGraph(pangenome, args.remove_high_copy_number, args.force) writePangenome(pangenome, pangenome.file, args.force)
def launch(args): mkOutdir(args.output, args.force) pangenome = Pangenome() pangenome.addFile(args.pangenome) align(pangenome, args.proteins, args.output, args.tmpdir, args.identity, args.coverage, args.defrag, args.cpu)
def launch(args): pangenome = Pangenome() pangenome.addFile(args.pangenome) computeNeighborsGraph(pangenome, args.remove_high_copy_number, args.force, show_bar=args.show_prog_bars) writePangenome(pangenome, pangenome.file, args.force, show_bar=args.show_prog_bars)