Example #1
0
def getp_fromapbp(fileAP):
  try:
    aps=pp(file=fileAP,var="aps",x=0,y=0).getf()
    bps=pp(file=fileAP,var="bps",x=0,y=0).getf()
    nz = len(aps)
  except:
    print("info: read apbp.txt")
    ap,bp = np.loadtxt("apbp.txt",unpack=True)
    nz = len(ap)
    aps = 0.5*(ap[0:nz-1]+ap[1:nz])
    bps = 0.5*(bp[0:nz-1]+bp[1:nz])
    nz = len(aps)
  #print("... ps")
  ps=pp(file=fileAP,var="ps").getf()
  nt,ny,nx = ps.shape
  p = np.zeros((nt,nz,ny,nx))
  if method == 1:
    ps=ppcompute.mean(ps,axis=2)
    p = np.zeros((nt,nz,ny))
  #print("... compute p")
  for tt in range(nt):
   for kk in range(nz):
    if method == 1:
      p[tt,kk,:] = aps[kk]+bps[kk]*ps[tt,:]
    elif method == 2:
      p[tt,kk,:,:] = aps[kk]+bps[kk]*ps[tt,:,:]
  return p
Example #2
0
#! /usr/bin/env python
from ppclass import pp

m = pp()
m.file = "/home/aymeric/Big_Data/POLAR_APPERE_lowres_wrfout_d01_2024-03-04_06.nc"
m.var = ["tk", "tk"]

m.y = ["80", "82"]
m.t = ["2", "5"]

m.getplot()
#"3240,3600"=8e annee en entier (moyenne annuelle)
#"3360,3380"=134 EteHN
#"3540,3560"=308 hiverHN
#"3570,3600"=histins195 (330-360) correspond a DYNAMICO-195
#"3560,3590"=histins195 (320-350) correspond a DYNAMICO-170

infz = 13  #borne inf de Z ###0  niveau 16 = 140 mbar = 76km
topz = 48  #borne sup de Z ###64 niveau 56 = 0.01mbar = 316km

nn = 3  #Indice pour retirer les poles sur les latitudes

# -> Recuperation des variables dans le fichier moyennes zonalement avec ls corrige

teta, lon, lat, zmod, t = pp(file=fff,
                             var="teta",
                             t=time_step,
                             x="-180,180",
                             verbose=True,
                             changetime="correctls").getfd()
zdtsw = pp(file=fff,
           var="zdtsw",
           t=time_step,
           x="-180,180",
           verbose=True,
           changetime="correctls").getf()
zdtlw = pp(file=fff,
           var="zdtlw",
           t=time_step,
           x="-180,180",
           verbose=True,
           changetime="correctls").getf()
Q = zdtsw + zdtlw
Example #4
0
tint=[["0.25,1.5"],["0.25,5.5"],["0.25,10.5"]] #Time must be as written in the input file
zint=[["0.1,10"],["0.1,10"],["0.1,10"]] #alt in km
xarea="-180,180"
yarea="-90,90"
step=5  
var="u" #variable
############################

x=np.zeros(nb_dataset,dtype='object') #object of all datasets

bornemax=0. # initialisation boundary values
bornemin=0.

for i in range(nb_dataset):

	myvar = pp(file=filename,var=var,t=tint[i],z=zint[i],x=xarea,y=yarea,compute="nothing").getf()  # get data to be changed according to selected variable
	data=np.ravel(myvar)
	        
	x[i]=np.array(data)
	
        #upper lower bounds:    
        maxval=np.amax(myvar)       
        romax=round(maxval,0)
        if abs(romax/maxval) < 1: romax=romax+1	

        minval=np.amin(myvar)       
        romin=round(minval,0)
        if abs(romin/minval) < 1: romin=romin-1	

	bornemax=np.amax([romax,bornemax])
        bornemin=np.amin([romin,bornemin])
Example #5
0
import scipy.stats
import matplotlib.pyplot as plt
import math as m

# arguments
from optparse import OptionParser  ### TBR by argparse
parser = OptionParser()
(opt, args) = parser.parse_args()
if len(args) == 0: args = "histmth.nc"
fi = args

# Choix des donnees
#------------------------------------------------------------------
month = 1.  # numero du mois
tt = 86400. * 30. * (month + 0.5)
windvel, x, y, z, t = pp(file=fi, var="wind10m", t=tt).getfd()
slp = pp(file=fi, var="slp", t=tt).getf()
u10m = pp(file=fi, var="u10m", t=tt).getf()
v10m = pp(file=fi, var="v10m", t=tt).getf()
slp = slp / 1E2
contfrac = pp(file=fi, var="contfracATM").getf()
#------------------------------------------------------------------

# Pour tracer des cartes
#------------------------------------------------------------------
p = plot2d()
p.f = slp
p.c = contfrac
p.x = x
p.y = y
p.fmt = "%.2f"
Example #6
0
#! /usr/bin/env python
from ppclass import pp

thres = 0.1

ww = pp()
ww.xp = 24
ww.yp = 12
ww.file = "tata.nc"
ww.var = "E366"
ww.useindex = "1000"
ww.z = 0
ww.proj = "cyl"
ww.out = "jpg" #"png"
ww.res = 100 #150 #300 #75
ww.fmt = "%.0f"
ww.colorbar = "gist_gray"
ww.quiet = True
ww.showcb = False
ww.div = 50 #10 #30
ww.vmin = -thres
ww.vmax = 1
#ww.trans = 0.5
ww.back = "blue_local"
ww.nopickle = True

# loop
nn=360
nn=25
tabcase = ["full","np","sp","trop"]
tabcase = ["full"]
#! /usr/bin/env python
from ppclass import pp

ww = pp()
ww.file = "series30m_1km.nc"
ww.var = ["HGT","Um","Vm","TSURF","Um","Vm"]
ww.vargoal = ["main","vector","vector","main","vector","vector"]
ww.z = 0.
#ww.vmin = [-6500.,150.] #does not work
#ww.vmax = [-1500.,300.] #does not work
ww.proj = "npstere"
ww.blat = 67.
#ww.title = ["topo+winds","surftemp+winds"] #does not work
ww.out = "png"
ww.includedate = False
ww.res = 75
ww.wscale = 10.
ww.svx = 3
ww.svy = 3
ww.quiet = True

# loop
count = 0
for ttt in range(474):
  print count
  ww.filename = "mov"+"%03d"%(count)
  ww.t = ttt
  ww.getdefineplot()
  ww.p[0].vmin = -6500. 
  ww.p[0].vmax = -1500.
  ww.p[1].vmin = 140.
Example #8
0
##################################################################
##################################################################

files = ["diagfi_start150.nc","diagfi_start175.nc","diagfi_start200.nc"]
labs = ['$T_{ini}=150$ K','$T_{ini}=175$ K','$T_{ini}=200$ K']
name = "profile_tini"

#files = ["diagfi_start200.nc","diagfi_start200_Rayleigh.nc","diagfi_start200_A034.nc"]
#labs = ['ref ($T_{ini}=200$ K)','ref + Rayleigh scatt.','ref + $A_{surf} = 0.34$']
#name = "profile_tests"

##################################################################
##################################################################

# OK retrieve pressure and temperatures
press = pp(file=files,var="p",x=0,y=0,t=1.e15).get()
temp = pp(file=files,var="temp",x=0,y=0,t=1.e15).get()

# this must be done before the next step
# ... because the next step is doing defineplot
temp.superpose = True
#temp.out = "png"
temp.filename = name
temp.includedate = False
temp.colorbar = "hot"

# this is doing defineplot amongst other things
temp.func(press)

# customize plots
count=0
#! /usr/bin/env python
from ppclass import pp

anewversion = pp()
anewversion.defineplot(loadfile="../../demo_data/gw.ppobj")
for plot in anewversion.p:
    plot.colorbar = "Paired"
    plot.title = "Psychedelic plot!"
anewversion.makeplot()
Example #10
0
#! /usr/bin/env python

from ppclass import pp

######
gcm = pp()
gcm.file = "amipYEAR/IPSL-CM5A-MR.nc"
gcm.var = "rlut"
gcm.t = 1
#
gcm.out = "pdf"
gcm.filename = "atlas"
gcm.back = "coast"
gcm.proj = "robin"
gcm.fmt = "%.0f"
gcm.div = 20
gcm.vmin = 100
gcm.vmax = 300
gcm.colorbar = "hot"
gcm.title = "OLR (GCM)"
gcm.units = r'W m$^{-2}$'
#
gcm.getplot(extraplot=3)

######
obs = pp()
obs << gcm
obs.file = "amipYEAR/OBS.nc"
obs.plotin = gcm
obs.title = "OLR (OBS)"
obs.getplot()
Example #11
0
#! /usr/bin/env python
from ppclass import pp

tsurf = pp()
tsurf.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
tsurf.var = "tsurf"
tsurf.x = None
tsurf.y = 10.
tsurf.t = 2.
tsurf.getdefineplot()

ps = pp()
ps << tsurf
ps.var = "ps"
ps.getdefineplot()

S = ps.func(tsurf)
S.p[0].linestyle=""
S.p[0].marker="h"
S.p[0].color="g"
S.makeplot()

icetot = pp()
icetot << tsurf
icetot.var = "icetot"
icetot.getdefineplot()

S2 = icetot.func(tsurf)
S2.p[0].linestyle=""
S2.p[0].marker="D"
S2.p[0].color="r"
Example #12
0
parser = OptionParser()
(opt,args) = parser.parse_args()
if len(args) == 0: args = "resultat.nc"

fi=args

#t = pp(var="tsurf",file=fi,x="-180,180",y=-80,superpose=True,quiet=True,ylabel=r'surface temperature ($^{\circ}$C)',legend="lat=-80",changetime="correctls",fmt="%.1f").get()-273.15
#t.plot(extraplot=3)
#t2 = pp(var="tsurf",file=fi,x="-180,180",y=-60,superpose=True,quiet=True,ylabel=r'surface temperature ($^{\circ}$C)',legend="lat=-60",plotin=t,changetime="correctls",fmt="%.1f").get()-273.15
#t2.plot()
#t2 = pp(var="tsurf",file=fi,x="-180,180",y=-20,superpose=True,quiet=True,ylabel=r'surface temperature ($^{\circ}$C)',legend="lat=-20",plotin=t,changetime="correctls",fmt="%.1f").get()-273.15
#t2.plot()
#t2 = pp(var="tsurf",file=fi,x="-180,180",y=0,superpose=True,quiet=True,ylabel=r'surface temperature ($^{\circ}$C)',legend="lat=0",plotin=t,changetime="correctls",fmt="%.1f").get()-273.15
#t2.plot()

t = pp()
t.var = "tsurf"
t.file = fi
t.x = "-180,180"
t.y = -80 ## latitude
t.superpose = True
t.quiet = True
t.ylabel = r'surface temperature ($^{\circ}$C)'
t.legend = "lat="+str(t.y)
t.changetime = "correctls"
t.fmt="%.1f"
t.ymin = -100.
t.ymax = 60.
t = t.get() - 273.15
t.plot(extraplot=3)
Example #13
0
def finddd(filefile,\
           timelist=None,\
           dt_out=50.,\
           lt_start=8.,\
           halolim=None,\
           method=1,\
           plotplot=False,\
           filewind=None,\
           filemean=None,\
           save=True):

    if method == 3:
       print "importing additional scikit-image packages"
       from skimage import filter,transform,feature
       import matplotlib.patches as mpatches
       from scipy import ndimage


    ###############################################################################
    ########################## FOR METHOD 1 FOR METHOD 2 ##########################
    ## FACLIST : how many sigmas below mean we start to consider this could be a vortex
    ## ... < 3.0 dubious low-intensity minima are caught
    ## ... 3 ~ 3.1 is a bit too low but helps? because size of pressure drop could be an underestimate of actual dust devil
    ## ... 3.2 ~ 3.3 is probably right, this is the one we choose for exploration [3.25]
    ## ... NB: values 3.2 to 3.6 yields the same number of devils but measured sizes could vary a bit
    ## ... > 3.6 makes strong minima disappear... especially >3.8
    ## ... EVENTUALLY 3.5-4 is better for problematic cases 
    ###############################################################################
    faclist = [3.75]

    ################################ FOR ALL METHODS
    ## (see below) NEIGHBOR_FAC is the multiple of std used to evaluate size
    #### METHOD 1
    #neighbor_fac = 2.7
    ## --> 1: limit not discriminative enough. plus does not separate neighbouring vortices.
    ##        ... but interesting: gives an exponential law (because vortices are artificially merged?)
    ## --> 2.7: very good for method 1. corresponds usually to ~0.3
    ## --> 2: so-so. do not know what to think. but usually too low.
    #### METHOD 3 --> optimizing neighbor_fac with visual checks and superimposing wind friction (max must be at boundaries)
    ##neighbor_fac = 1.5 # too low --> vortices too large + false positives
    neighbor_fac = 2.7 # optimal --> good for separation, only a slight underestimation of size
    ##neighbor_fac = 3.0 # too high --> excellent for separation, but size quite underestimated
    ###############################################################################
    ###############################################################################

    ###############################################################################
    ###############################################################################
    if save:
        myfile1 = open(filefile+'m'+str(method)+'_'+'1.txt', 'w')
        myfile2 = open(filefile+'m'+str(method)+'_'+'2.txt', 'w')
    ###############################################################################
    ###############################################################################

    ## get the resolution within the file
    dx = ncattr(filefile,'DX') ; print "resolution in meters is: ",dx
    ## if no halolim is given, guess it from resolution
    if halolim is None:
        extentlim = 2000. # the putative maximum extent of a vortex in m
        halolim = extentlim / dx
        print "maximum halo size is: ",halolim

    ## mean and std calculations
    ## -- std is used in both methods for limits
    ## -- mean is only used in method 1
    print "calculate mean and std, please wait."
    ## -- get time series of 2D surface pressure
    ## -- (a different file to calculate mean might be provided)
    if filemean is None:
      psfc = pp(file=filefile,var="PSFC",verbose=True).getf()
    else:
      psfc = pp(file=filemean,var="PSFC",verbose=True).getf()

    ## -- calculate mean and standard deviation
    ## -- ... calculating std at all time is not right!
    ## -- ... for mean value though, similar results with both methods
    mean = np.mean(psfc,dtype=np.float64)
    std = np.std(psfc,dtype=np.float64)
    damax = np.max(psfc)
    damin = np.min(psfc)
    ## some information about inferred limits
    print "**************************************************************"
    print "MEAN",mean
    print "STD",std
    print "LIMIT FOR PRESSURE MINIMUM:",-np.array(faclist)*std
    print "LIMIT FOR EVALUATING SIZE OF A GIVEN LOCAL MINIMUM",-neighbor_fac*std
    print "**************************************************************"
    
    # if no timelist is given, take them all
    if timelist is None:
        test = netCDF4.Dataset(filefile)
        sizet = len(test.dimensions['Time'])
        print "treat all time values: ",sizet
        timelist = range(0,sizet-1,1)

    ## LOOP ON TIME
    for time in timelist:

     ## get 2D surface pressure at a given time
     ## (this is actually so quick we don't use psfc above)
     psfc2d = pp(file=filefile,var="PSFC",t=time).getf()
     if filewind is not None:
       ustm = pp(file=filewind,var="USTM",t=time).getf()

     ## MAIN ANALYSIS. LOOP ON FAC. OR METHOD.
     for fac in faclist:
     ###fac = 3.75
     ###for method in [2,1]:
  
      ## initialize arrays
      tabij = [] ; tabsize = [] ; tabdrop = []
      tabijcenter = [] ; tabijvortex = [] ; tabdim = [] 
      tabwind = []

      ################ FIND RELEVANT POINTS TO BE ANALYZED
      ## lab is 1 for points to be treated by minimum_position routine
      ## we set elements at 1 where pressure is under mean-fac*std
      ## otherwise we set to 0 because this means we are close enough to mean pressure (background)
      lab = np.zeros(psfc2d.shape)
      if method == 1:
          # method 1: standard deviation
          lab[np.where(psfc2d < mean-fac*std)] = 1
      elif method == 2:
          # method 2: polynomial fit
          # ... tried smooth but too difficult, not accurate and too expensive
          deg = 5 #plutot bien (deg 10 ~pareil) mais loupe les gros (~conv cell)
          #deg = 2 #pas mal mais false positive (pareil 3-4 mm si un peu mieux)
          #        #(OK now with fixing the false positive bug)
          nx = psfc2d.shape[1] ; ny = psfc2d.shape[0]
          xxx = np.array(range(nx)) ; yyy = np.array(range(ny))
          anopsfc2d = psfc2d*0. ; polypsfc2d = psfc2d*0.
          for iii in range(0,nx,1):
             poly = np.poly1d(np.polyfit(yyy,psfc2d[iii,:],deg))
             polypsfc2d[iii,:] = poly(yyy)
          for jjj in range(0,ny,1):
             poly = np.poly1d(np.polyfit(xxx,psfc2d[:,jjj],deg))
             polypsfc2d[:,jjj] = 0.5*polypsfc2d[:,jjj] + 0.5*poly(xxx)
          ## smooth a little to avoid 'crosses' (plus, this removes PBC problems)
          polypsfc2d = ppcompute.smooth2diter(polypsfc2d,n=deg)
          # compute anomaly and find points to be explored
          anopsfc2d = psfc2d - polypsfc2d
          limlim = fac*std ## same as method 1
          lab[np.where(anopsfc2d < -limlim)] = 1
      elif method == 3:
          # method 3 : find centers of circle features using image processing techniques

          # initialize the array containing point to be further analyzed
          lab = np.zeros(psfc2d.shape)

          # enclose computations in a test to save time when no obvious vortices
          datab = psfc2d[np.where(psfc2d < mean-fac*std)]
          #datab = np.array([42]) #uncomment this to always include search!
          if datab.shape[0] == 0:
            ### if no point has significantly lower value than mean
            ### well, no need to do anything, keep lab filled with 0
            pass
          else:
            ### field to analyze: pressure
            ### --- apply a Laplace transform to highlight drops
            field = ndimage.laplace(psfc2d)
 
            ### prepare the field to be analyzed 
            ### by the Hough transform or Blob detection
            ### --> normalize it in an interval [-1,1]
            ### --> NB: dasigma serves later for Hough transform
            ### --> NB: polynomial de-trending does not seem to help
            # ... test 1. local max / min used for normalization.
            mmax = np.max(field) ; mmin = np.min(field) ; dasigma = 2.5
            ## ... test 2. global max / min used for normalization. bof.
            #mmax = damax ; mmin = damin ; dasigma = 1.0 #1.5 trop restrictif
            spec = 2.*((field-mmin)/(mmax-mmin) - 0.5)
 
            #### **** BLOB DETECTION ****
            #### Better than Hough transform for multiple adjacent vortices
            #### log: best / dog or doh: miss small vortices, hence the majority
            #### SITE: http://scikit-image.org/docs/dev/auto_examples/plot_blob.html
            #### PUBLISHED: https://peerj.com/articles/453/
            ### --------------------------------------------        
            ### the parameters below are aimed for efficiency
            ### ... because anyway the actual size is not detected
            ### ... so setting max_sigma to a high value is not needed
            ### --------------------------------------------
            blobs = feature.blob_log(spec, max_sigma=3, num_sigma=3, threshold=0.05)
            ### a plot to check detection
            if plotplot:
              fig, ax = mpl.subplots(1, 1)
              what_I_plot = psfc2d #spec #field
              ax.imshow(what_I_plot, cmap=mpl.cm.gray)
            ### store the detected points in lab
            for blob in blobs:
              center_x, center_y, r = blob
              #lab[center_x,center_y] = 1
              # a test for faster calculations (at the expense of missing 1% vortices maybe)
              if psfc2d[center_x,center_y] < mean-fac*std:
                lab[center_x,center_y] = 1
              if plotplot:
                circ = mpatches.Circle((center_y, center_x), r*np.sqrt(2), fill=False, edgecolor='green', linewidth=2)
                ax.add_patch(circ)
            if plotplot: mpl.show()

#################################### BEGIN TEST HOUGH TRANSFORM
#            # perform an edge detection on the field
#            # ... returns an array with True on edges and False outside
#            # http://sciunto.wordpress.com/2013/03/01/detection-de-cercles-par-une-transformation-de-hough-dans-scikit-image/    
#            edges = filter.canny(filter.sobel(spec),sigma=dasigma)
#            # initialize plot for checks
#            if plotplot:
#              fig, ax = mpl.subplots(ncols=1, nrows=1, figsize=(10,8))
#              ax.imshow(field, cmap=mpl.cm.gray)
#            ## detect circle with radius 3dx. works well. 5dx detection pretty similar.
#            ## use an Hough circle transform
#            radii = np.array([2,3])
#            hough_res = transform.hough_circle(edges, radii)
#            # analyze results of the Hough transform
#            nnn = 0 
#            sigselec = neighbor_fac
#            #sigselec = 3.
#            for radius, h in zip(radii, hough_res):
#              # number of circle features to keep
#              # ... quite large. but we want to be sure not to miss anything.
#              nup = 30 
#              maxima = feature.peak_local_max(h, num_peaks=nup)
#              # loop on detected circle features
#              for maximum in maxima:
#                center_x, center_y = maximum #- radii.max()
#                # nup is quite high so there are false positives.
#                # ... but those are easy to detect
#                # ... if pressure drop is unclear (or inexistent)
#                # ... we do not take the point into account for further analysis
#                # ... NB: for inspection give red vs. green color to displayed circles
#                diag = field[center_x,center_y] - (mean-sigselec*std)
#                ## uncomment below to keep all detections
#                #diag = -1
#                if diag < 0:  
#                    col = 'green'
#                    nnn = nnn + 1
#                    lab[center_x,center_y] = 1
#                else:
#                    col = 'red'
#                # draw circles
#                if plotplot:
#                  circ = mpatches.Circle((center_y, center_x), radius,fill=False, edgecolor=col, linewidth=2)
#                  ax.add_patch(circ)
#            if plotplot:
#              mpl.title(str(nnn)+" vortices")
#              if nnn>0: mpl.show()
#              mpl.close()
#################################### END TEST HOUGH TRANSFORM

      ## while there are still points to be analyzed...
      while 1 in lab:
        ## ... get the point with the minimum field values
        ## ... within values of field at labels lab
        if method == 1 or method == 3: 
            ij = minimum_position(psfc2d,labels=lab)
        elif method == 2:
            ij = minimum_position(anopsfc2d,labels=lab)
        ## ... store the indexes of the point in tabij
        tabij.append(ij)
        ## ... remove the point from labels to be further explored by minimum_position
        lab[ij] = 0
    
      ################ GET SIZES BASED ON THOSE FOUND POINTS
      ## reslab is the same as lab
      ## except for scanning purpose we keep the information
      ## about how went the detection
      ## --> and we set a lower fac
      ## --> above a high fac is good to catch only strong vortices
      ## --> but here a casual fac=3 is better to get accurate sizes
      ## --> or even lower as shown by plotting reslab 
      reslab = np.zeros(psfc2d.shape)
      #reslabf = np.zeros(psfc2d.shape) # TESTS
      if method == 1 or method == 3:
          reslab[np.where(psfc2d < mean-neighbor_fac*std)] = 1
          #reslabf[np.where(psfc2d < mean-neighbor_fac_fine*std)] = 1 # TESTS
      elif method == 2:
          reslab[np.where(anopsfc2d < -neighbor_fac*std)] = 1
     
      ## initialize halomax and while loop
      ## HALOMAX : maximum halo defined around a minima to evaluate the size
      ## ... halomax must be large enough to encompass a vortex
      ## ... but not too large otherwise neighboring vortex are caught
      halomax = 3 ; notconv = 9999 ; yorgl = 9999
    
      ## WHILE LOOP on HALOMAX exploration
      while ( notconv > 0 and halomax < halolim and yorgl != 0 ):
       # now browse through all points caught in previous loop
       for ij in tabij:
        ## ... OK. take each indexes found before with minimum_position
        i,j = ij[0],ij[1]
        ## EITHER
        ## ... if reslab is already 0, we do not have to do anything
        ## ... because this means point is already part of detected vortex
        ## OR
        ## ... if the ij couple is already in a previously detected vortex
        ## ... we don't actually need to consider it again
        ## ... this is necessary otherwise (sometimes a lot) of false positives
        if reslab[i,j] <= 0 or ij in tabijvortex:
          pass
        else:
          ## GET HALOS. SEE FUNCTION ABOVE.
          nmesh,maxw,maxh,reslab,tabijvortex=gethalo(ij,reslab,halomax,tabijvortex)

          ## OK. check this is actually a vortex.
          ## get the size. get the drop.
          ## store results in file
          if nmesh is not None:

            ## calculate size
            ## we multiply by mesh area, then square to get approx. size of vortex
            ## [if one wants to obtain equivalent diameter, multiply by 2.*np.sqrt(np.pi)]
            size = np.sqrt(nmesh*dx*dx)

            ## check size. if not OK recompute halo with more stringent zone around pressure minimum.
            ## -- NB: reslab and tabijvortex do not need to be changed again, was done just before
            ## --     however, we could have been a little bit more subtle to disentangle twin vortices        
            # if (np.abs(maxw-maxh)*dx/size > 0.33):
            # #if (np.sqrt(maxw*maxh*dx*dx) > size):
            #    #print "asymmetry!",np.abs(maxw-maxh)*dx,size
            #    nmesh,maxw,maxh,dummy,dummy=gethalo(ij,reslabf,halomax,tabijvortex)
            #    if nmesh is not None: size = int(np.sqrt(nmesh*dx*dx))
            #    #print "new values",np.abs(maxw-maxh)*dx,size

            ## calculate drop.
            if method == 1 or method == 3: drop = -psfc2d[i,j]+mean
            else: drop = -anopsfc2d[i,j]

            #############################################################
            ##### Check this is the actual minimum (only tested so far with method=3)
            #if method == 1 or method ==3:
            #  ## ... define a halo around the minimum point
            #  ix,ax,iy,ay = i-maxw,i+maxw+1,j-maxh,j+maxh+1
            #  ## ... treat the boundary case (TBD: periodic boundary conditions)
            #  nx = reslab.shape[1] ; ny = reslab.shape[0]
            #  if ix < 0: ix = 0
            #  if iy < 0: iy = 0
            #  if ax > nx: ax = nx
            #  if ay > ny: ay = ny
            #  ## ... keep real minimal value
            #  ## DOMAINMIN --> does not change a lot results (not worth it)
            #  domainmin = np.max(-psfc2d[ix:ax,iy:ay])+mean
            #  if drop < domainmin:
            #     print "corrected drop",drop,domainmin
            #     drop = domainmin
            #  ### DOMAINDROP --> leads to underestimate drops in most cases
            #  #domaindrop = np.max(psfc2d[ix:ax,iy:ay])-np.min(psfc2d[ix:ax,iy:ay])
            #  #drop = domaindrop
            #############################################################

            ## if available get info on friction velocity
            if filewind is not None:
              ## ... define a halo around the minimum point
              ix,ax,iy,ay = i-maxw,i+maxw+1,j-maxh,j+maxh+1
              ## ... treat the boundary case (TBD: periodic boundary conditions)
              nx = reslab.shape[1] ; ny = reslab.shape[0]
              if ix < 0: ix = 0
              if iy < 0: iy = 0
              if ax > nx: ax = nx
              if ay > ny: ay = ny
              ## WINDMAX
              windmax = np.max(ustm[ix:ax,iy:ay])
              tabwind.append(windmax)
            else:
              tabwind.append(0.) 

            ## store info in dedicated arrays
            tabdim.append((maxw*dx,maxh*dx))
            tabsize.append(size)
            tabdrop.append(drop)
            tabijcenter.append(ij)
            #print "... VORTEX!!!! size %.0f drop %.1f coord %.0f %.0f" % (size,drop,i,j)

       ## count how many points are not converged and left to be analyzed
       notconv = len(np.where(reslab > 1)[0])
       yorgl = len(np.where(reslab == 1)[0])
    
       ## increment halomax
       ## to speed-up the increment is slightly increasing with considered halomax
       halomax = halomax + halomax / 2
    
      ## just for simpler plots.
      reslab[reslab > 2] = 4
      reslab[reslab < -2] = -4

      ## give some info to the user
      if len(tabsize) > 0:
        nvortex = len(tabsize)
        maxsize = np.max(tabsize)
        maxdrop = np.max(tabdrop)
        maxwind = np.max(tabwind)
      else:
        nvortex = 0
        maxsize = 0
        maxdrop = 0.
        maxwind = 0.
      notconv = len(np.where(reslab > 1)[0])
      print "t=%3.0f / n=%2.0f / s_max=%4.0f / d_max=%4.1f / halo_out=%3.0f / notconvp=%3.1f / wind=%4.1f" \
            % (time,nvortex,maxsize,maxdrop,halomax,100.*notconv/float(reslab.size),maxwind)        
    
      ## save results in a text file
      if save:
          # convert t in local time
          ttt = lt_start + time*dt_out/3700.      
          # write files
          myfile2.write( "%7.4f ; %5.0f ; %6.1f ; %8.3f ; %8.3f\n" % (ttt,nvortex,maxsize,maxdrop,maxwind) )
          for iii in range(len(tabsize)):
              myfile1.write( "%7.4f ; %6.1f ; %8.3f ; %5.0f ; %5.0f ; %8.3f\n" \
              % (ttt,tabsize[iii],tabdrop[iii],tabdim[iii][0],tabdim[iii][1],tabwind[iii]) )

      #### PLOT PLOT PLOT PLOT
      damaxsize = 10000.
      #damaxsize = 400.
      if (nvortex>0 and plotplot) or (nvortex>0 and maxsize > damaxsize):
      #if nvortex > 200:
       mpl.figure(figsize=(12,8))
       myplot = plot2d()
       myplot.x = np.array(range(psfc2d.shape[1]))*dx/1000.
       myplot.y = np.array(range(psfc2d.shape[0]))*dx/1000.
       myplot.title = str(nvortex)+" vortices found (indicated diameter / pressure drop)"
       myplot.xlabel = "x distance (km)"
       myplot.ylabel = "y distance (km)"
       if method != 2:
           #myplot.f = ustm 
           myplot.f = psfc2d
           #myplot.vmin = damin
           #myplot.vmax = damax
           myplot.vmin = mean - 6.*std
           myplot.vmax = mean + 6.*std
       else:
           myplot.field = anopsfc2d
           myplot.vmin = -1.5
           myplot.vmax = 0.5
       myplot.fmt = "%.1f"
       myplot.div = 20
       myplot.colorbar = "spectral"
       myplot.make()
      
       ### ANNOTATIONS
       for iii in range(len(tabsize)):
        ij = tabijcenter[iii]
        coord1 = ij[1]*dx/1000.
        coord2 = ij[0]*dx/1000.
        txt = "%.0f/%.2f/%.0f" % (tabsize[iii],tabdrop[iii],100*np.abs(tabdim[iii][0]-tabdim[iii][1])/tabsize[iii])
        txt = "%.0f m / %.2f Pa" % (tabsize[iii],tabdrop[iii])
        mpl.annotate(txt,xy=(coord1,coord2),
             xytext=(-10,-30),textcoords='offset points',ha='center',va='bottom',\
             bbox=dict(boxstyle='round,pad=0.2', fc='yellow', alpha=0.3),\
             arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=-0.3',color='red'),\
             size='small')
    
       ###show detection
       lev = [-4,-2,-1,0,1,2,4] ## all colours for detection cases
       lev = [-1,0] # show dubious areas as detection areas
       lev = [-1,1] # show dubious areas as no-detection areas
       mpl.contourf(myplot.x,myplot.y,reslab,alpha=0.9,cmap=mpl.cm.get_cmap("binary_r"),levels=lev)
    
       ### SHOW OR SAVE IN FILE
       mpl.show()
       #save(mode="png",filename="detectm"+"_"+str(time)+"_"+str(method),folder="detect/",includedate=False)
    
    ## close data files
    if save:
        myfile1.close()
        myfile2.close()
Example #14
0
## options
from optparse import OptionParser ### TBR by argparse
parser = OptionParser()
parser.usage = "les.py netCDF_file(s)" #les.py becomes a commandline applicable to a netcdf file
(opt,files) = parser.parse_args()

## constants
t0 = 220.
p0 = 610.
r_cp = 1.0/4.4
grav = 3.72
R = 192.

## dimensions
foo1,foo2,foo3,z,t = pp(file=files[0],var="T",x=0,y=0).getfd()
nz,nt = z.size,t.size
nf = len(files)
print nf
ntt = nt*nf

## arrays for time series
tprimemean,tmean = np.zeros([ntt,nz]),np.zeros([ntt,nz])
wprimemean,wmean = np.zeros([ntt,nz]),np.zeros([ntt,nz])
wmax = np.zeros([ntt,nz])
vehfmean = np.zeros([ntt,nz])
pblh,pblh1,pblh2,pblh3 = np.zeros(ntt),np.zeros(ntt),np.zeros(ntt),np.zeros(ntt)

## loop
indt = -1
Example #15
0
import numpy as np
import planets

####################################################
myplanet = planets.Saturn
rad = myplanet.a
####################################################
#fff = "DRAG90days_DISSIP10000_year8_1842401736_512_z5"
fff = "DRAG90days_DISSIP10000_year9_z5_256_every20d_278921160-316973159"
uuu,vvv = "u","v"
ttt = 1
zzz = 1.5e5
#####################################################

# get wind fields
u,lon,lat,foo,foo = pp(file=fff+".nc",var="u",t=ttt,z=zzz,compute="pert_x").getfd()
v = pp(file=fff+".nc",var="v",t=ttt,z=zzz,compute="pert_x").getf()
#temp = pp(file=fff+".nc",var="temp",t=ttt,z=zzz,compute="pert_x").getf()
   
# work out the pole problem 
# -- spurious high values if extrem lati close to +/-90
ny,nx = u.shape
u,v = u[1:ny-2,:],v[1:ny-2,:]
lonsave,latsave = lon,lat
lon,lat = lon[1:ny-2,:],lat[1:ny-2,:]

#########################################
# compute vorticity and divergence
div, vorti = divort(u,v,lon,lat,rad)
#########################################
Example #16
0
#! /usr/bin/env python
from ppclass import pp

prof = pp()
prof.verbose = True
#prof.file = "/home/aymeric/Big_Data/case_night.nc"
prof.file = "/home/aymeric/Big_Data/GALE/wrfout_d03_2024-06-09_00:00:00_z"
prof.var = "tk"
prof.t = [10., 20.]
prof.x = -5.  #30
prof.y = 138.  #30
prof.filename = "vertpress"

prof.get()
prof.superpose = True
prof.defineplot()
prof.p[0].logy = True
prof.makeplot()

## a small workaround if one wants to change axis names
## (it is difficult because of swapping axis)
prof.p[0].swaplab = False
prof.p[0].xlabel = "Temperature (K)"
prof.p[0].ylabel = "Pressure (Pa)"
prof.makeplot()
Example #17
0
#! /usr/bin/env python
from ppclass import pp

# define object
p = pp()

# define file, variable, slice
p.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
p.var = "icetot"
p.t = 0.5

# get field. convert from kg m-2 to pr_mic
p.get()
p = 1000. * p

# customize plot
# -- map projection, background image
p.proj = "robin"
p.back = "vishires"
p.trans = 0.5
# -- title, colorbar
p.title = 'Water ice clouds on Mars'
p.units = "pr-$\mu$m"
p.colorbar = "spectral"
p.vmin = 0.
p.vmax = 8.
p.div = 32
p.fmt = '%.1f'
# -- save info
p.filename = "weblowres"
p.includedate = False
Example #18
0
if opt.var is None:
    for filename in files: inspect(filename)
    exit()

######################################
# use ppclass to get field and plot it
######################################
# treat the case of additional vectors or contours (contours must be before vectors)
var = [] ; vargoal = []
for element in opt.var:
    var.append(element) ; vargoal.append("main")
    if opt.contour is not None: var.append(opt.contour) ; vargoal.append("contour")
    if opt.vecx is not None: var.append(opt.vecx) ; vargoal.append("vector")
    if opt.vecy is not None: var.append(opt.vecy) ; vargoal.append("vector")
# set pp object
user = pp()
user.file = files
user.var = var ; user.vargoal = vargoal
user.x = opt.x ; user.y = opt.y 
user.z = opt.z ; user.t = opt.t
user.verbose = opt.verbose
if not user.verbose: user.quiet = True
user.compute = opt.compute
user.changetime = opt.changetime
user.useindex = opt.useindex
user.sx = opt.sx ; user.sy = opt.sy
user.sz = opt.sz ; user.st = opt.st
user.svx = opt.svx ; user.svy = opt.svy
user.savtxt = opt.savtxt
if opt.xp is not None: user.xp = opt.xp
if opt.yp is not None: user.yp = opt.yp
Example #19
0
#! /usr/bin/env python

from ppclass import pp
import planets
import ppplot

fi = "DRAG90days_DISSIP10000_year7_912791376_512_z5"
u,lon,lat,p,t = pp(file=fi+".nc",var="u",t=0,z=0,x="-180,180").getfd()

# index = acosphi*((omega*acosphi)+u) / (omega*a*a)
sindex = planets.Saturn.superrot(u=u,lat=lat)

pl = ppplot.plot1d()
pl.f = sindex*1000.
pl.x = lat
pl.ylabel = r'Local superrotation index $s = \mathcal{M}_u / \Omega a^2$ ($\times 10^{-3}$)'
pl.xmin = -10.
pl.xmax = 10.
pl.fmt = '%.0f'
pl.ymin = -30.
pl.ymax = 10.
pl.marker = ''
pl.xlabel = "Latitude (deg)"
pl.make()
ppplot.save(mode="png",filename=fi+"_superrot")




Example #20
0
#! /usr/bin/env python
from ppclass import pp

var1 = pp(\
file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",\
var="ps",\
x=None,\
y=10.,\
t=2.)
var1.get()

var2 = pp(\
file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",\
var="phisinit",\
x=None,\
y=10.,\
t=2.)
var2.get()
var2 = var2 / 3.72

S = var2.func(var1)

S.p[0].marker = 'o'
S.p[0].linestyle = ''
S.p[0].ylabel = "Surface geopotential height (km)"
S.p[0].ycoeff = 1./1000.
S.p[0].fmt = '%.0f'
S.filename = "function"
S.makeplot()

# * Script header
# * Import `pp` object from `ppclass`
# * Define a `pp` object named `ex`
#   (and make it quiet)
# * Define attributes
#   - netCDF file to read
#   - variable to read
#   - value on y axis
#   - value on z axis
# * Get data from netCDF file + Make plot

# In[16]:

#! /usr/bin/env python
from ppclass import pp
ex = pp()
ex.quiet = True
ex.file = 'diagfired.nc'
ex.var = 'temp'
ex.y = 15.
ex.z = 75.
ex.getplot()

# Here is an example on how to customize this plot

# In[17]:

ex.title = r'Hovmoller plot for $T_{75km}$'
ex.xcoeff = 24.
ex.xlabel = 'Time (hours)'
ex.ylabel = 'Altitude (km)'
Example #22
0
#! /usr/bin/env python
from ppclass import pp
import matplotlib.pyplot as mpl
import numpy as np

icetot = pp(file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",var="icetot",t="0.5,2.5",compute="nothing").getf()
mpl.hist(np.ravel(icetot))
mpl.show()
Example #23
0
#! /usr/bin/env python
from ppclass import pp

fi = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
v = ["ps","phisinit"]
vg = ["main","contour"]

meanps = pp(file=fi,var=v,vargoal=vg,t="0,1").get()
waveref = pp(file=fi,var=v,vargoal=vg,t=0.5).get() - meanps
waveref.smooth(5)
waveref.title = "$p_s$ diurnal anomaly"
waveref.proj = "moll"

waveref.vmin = -10
waveref.vmax = 10
waveref.div = 10
waveref.filename = "tide"
waveref.plot(extraplot=3)

eqmeanps = pp(file=fi,var="ps",t="0,1",y=0.).get() 
addplot = pp(file=fi,var="ps",t=0.5,y=0.).get() - eqmeanps
addplot.plotin = waveref
addplot.title = "Tide signal at the equator"
addplot.ylabel = "$p_s$ diurnal anomaly (Pa)"
addplot.linestyle = ""
addplot.marker = "."
addplot.plot()

for choice_t in [0.6,0.7]:
    wave = pp(file=fi,var=v,vargoal=vg,t=choice_t).get() - meanps
    wave << waveref
Example #24
0
#! /usr/bin/env python
from ppclass import pp

prof = pp()
prof.verbose = True
#prof.file = "/home/aymeric/Big_Data/case_night.nc"
prof.file = "/home/aymeric/Big_Data/GALE/wrfout_d03_2024-06-09_00:00:00_z"
prof.var = "tk"
prof.t = [10.,20.]
prof.x = -5. #30
prof.y = 138. #30
prof.filename = "vertpress"

prof.get()
prof.superpose = True
prof.defineplot()
prof.p[0].logy = True
prof.makeplot()

## a small workaround if one wants to change axis names
## (it is difficult because of swapping axis)
prof.p[0].swaplab = False
prof.p[0].xlabel = "Temperature (K)"
prof.p[0].ylabel = "Pressure (Pa)"
prof.makeplot()




Example #25
0
#! /usr/bin/env python
from ppclass import pp

brief = pp()
brief.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
brief.define()
Example #26
0
#! /usr/bin/env python
from ppclass import pp

### LMD simulation results
### ----------------------
### set object
lmdu = pp()
### set file var coord
lmdu.file = 'LMD/wrfout_d01_2024-09-08_01:00:00_z'
lmdu.var = 'Um'
lmdu.x = -6.
lmdu.y = -2.
lmdu.t = 0.
### get data
lmdu.get()

### MRAMS simulation results
### ------------------------
### set object
mramsu = pp()
### get attributes from lmd object
mramsu << lmdu
### OK just change what changes in MRAMS
mramsu.file = 'MRAMS/mramsout_d01_2024-09-08_01:00:00_z'
mramsu.var = 'u_areo'
### get data
mramsu.get()

### THE SAME BUT FOR V
### ------------------
lmdv = pp()
Example #27
0
    etape(varname,time0)
  return

####################################################
####################################################
####################################################
####################################################

#lstab = pp(file=fileAP,var="ls",x=0,y=0,z=0).getf()
#lstab = lstab*180./np.pi
#lstab = fix_time_axis(lstab,360.) # in years

####################################################
time0 = time.time()

psbc = pp(file=fileAP,var="ps",t="0,1e10",x=charx).getf()
ny = psbc.shape[0]
ap,bp = np.loadtxt("apbp.txt",unpack=True)


nz = len(ap)
aps = 0.5*(ap[0:nz-1]+ap[1:nz])
bps = 0.5*(bp[0:nz-1]+bp[1:nz])
nz = len(aps)

press = np.zeros((nz,ny))
for kk in range(nz):
 for yy in range(ny):
  press[kk,yy] = aps[kk]+bps[kk]*psbc[yy]

####################################################
Example #28
0
#! /usr/bin/env python
from ppclass import pp

pp(file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",
   var="u",
   t="0.5",
   z="10").getplot()
#! /usr/bin/env python
from ppclass import pp


### Active Clouds
### -------------
act = pp()
act.file = "/planeto/tnalmd/runs/newref/MY26.ifort.modelprecise/monthlybox/concat_LT14_P.nc"
act.var = "temp"
act.x = "-180,180"
act.y = "-20,20"
act.z = 50.0
###### Change time axis from Sols to Ls:
act.changetime = "mars_sol2ls"
act.label = "GCM active clouds"
act.title = "Equatorial daytime temperature at 50 Pa"
act.marker = "-"
act.color = "g"
act.out = "png"
act.get()


### Inactive Clouds
### ---------------
inac = pp()
inac << act
inac.file = "/planeto/tnalmd/runs/newref/MY26.inac/monthlybox/concat_LT14_P.nc"
inac.label = "GCM inactive clouds"
inac.marker = ""
inac.color = "r"
inac.get()
### Petite fonction utilisee plus tard pour convertir les tableaux DYNAMICO dans la taille de ceux radiatif (Cherche l indice de la valeur lat la plus proche de celle prise)
def find_x(array, x):
    y = int(np.argmin(np.abs(np.ceil(array[None].T - x)), axis=0))
    return int(y)


###Initialisation du domaine, des profils vertical et latitudinal + caracteristiques planete

#Recuperation des coefficients pour calculer le champ de pression 2D
coeffbp = loadtxt("coeffbp.txt", delimiter=",")

fff = "../simulations_dynamiques/Xhistins_195.nc"
time_step = 300  #"761040,500000000" #309 #"420,500" "360,420"

### VARIABLES DYNAMICO
lsub = pp(file=fff, var="ls", x=0, y=0, verbose=True).getf()
ls = (lsub / np.pi) * 180.
u, lon, lat, zmod, t = pp(file=fff,
                          var="u",
                          t=time_step,
                          x="-180,180",
                          verbose=True).getfd()
v, lon, lat, zmod, t = pp(file=fff,
                          var="v",
                          t=time_step,
                          x="-180,180",
                          verbose=True).getfd()
temp, lon, lat, zmod, t = pp(file=fff,
                             var="temperature",
                             t=time_step,
                             x="-180,180",
Example #31
0
import numpy as np 
from ppclass import pp
import ppplot


shiftday = 258 + 27
shiftday = 258

### GET COORDINATES
lines = open("input_coord", "r").readlines()
lon   = float(split(lines[0])[0]) ; lat   = float(split(lines[1])[0])
xdate = float(split(lines[2])[0]) ; loct  = float(split(lines[3])[0])
utc = loct - lon/15.

### GCM
req = pp()
req.file = "diagfi.nc"
req.var = "vmr_h2ovap" 
req.var = "temp"
req.x = lon
req.y = lat
req.t = shiftday + utc/24.
req.verbose = True
req.changetime = "mars_dayini"
#prof,xx,yy,zz,tt = req.getfd()

### MCD
z,tpot,q,u,v = np.loadtxt("input_sounding",skiprows=1,unpack=True)
r,cp,p,rho,t = np.loadtxt("input_therm",unpack=True)
hgt,tsurf = np.loadtxt("input_more",unpack=True)
q = 0.001*q
Example #32
0
# arguments
from optparse import OptionParser ### TBR by argparse
parser = OptionParser()
(opt,args) = parser.parse_args()
if len(args) == 0: args = "resultat.nc"
fi=args

##################################################
# REGLAGES
##################################################
tt = 120.
vmin = 0. ; vmax = 1400.
##################################################
lev = 1013e2

temp,x,y,z,t = pp(file=fi,var="temp",t=tt,z=lev,verbose=True,changetime="correctls").getfd()

albedo = pp(file=fi,var="ALB",t=tt,changetime="correctls").getf()
fluxabs = pp(file=fi,var="ASR",t=tt,changetime="correctls").getf()

fluxrecu = fluxabs / (1.-albedo)

p = plot2d()
p.f = fluxrecu
p.x = x
p.y = y
p.proj = "cyl"
p.back = "coast"
p.fmt = "%.0f"
p.title = 'Surface insolation'
p.units = 'W/m2'
Example #33
0
var = []
vargoal = []
for element in opt.var:
    var.append(element)
    vargoal.append("main")
    if opt.contour is not None:
        var.append(opt.contour)
        vargoal.append("contour")
    if opt.vecx is not None:
        var.append(opt.vecx)
        vargoal.append("vector")
    if opt.vecy is not None:
        var.append(opt.vecy)
        vargoal.append("vector")
# set pp object
user = pp()
user.file = files
user.var = var
user.vargoal = vargoal
user.x = opt.x
user.y = opt.y
user.z = opt.z
user.t = opt.t
user.verbose = opt.verbose
if not user.verbose: user.quiet = True
user.compute = opt.compute
user.changetime = opt.changetime
user.useindex = opt.useindex
user.sx = opt.sx
user.sy = opt.sy
user.sz = opt.sz
Example #34
0
#! /usr/bin/env python
from ppclass import pp

u = pp()
u.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
u.var = ["temp","phisinit","u","v"]
u.vargoal = ["main","contour","vector","vector"]
u.t = "0.5,0.8"
u.z = "50000"
u.filename = "vector"

# stride both x and y
# this impacts field + vector
u.sx = 3
u.sy = 3
u.getplot()
u.sx = 1 # (reinitialise)
u.sy = 1 # (reinitialise)

# stride vectors only
# not field (here topography)
u.sx = 3
u.sy = 3
u.getplot()

u.z = "50"
u.filename = "myplot"
u.getplot()

u.colorbar = "jet"
u.trans = 0.0
Example #35
0
#! /usr/bin/env python
from ppclass import pp

les = pp(file="/home/aymeric/Big_Data/LES_dd/psfc_f18.nc",
         var="PSFC",
         y=["50,250"],
         x=["50", "100"])
les.verbose = True
les.getplot()

les.x = None
les.y = ["200", "250"]
les.t = "10"
les.getplot()

les.x = None
les.y = None
les.t = ["10"]
#les.stridex = 3
#les.stridey = 3
les.filename = "les_psfc"

les.getplot()
Example #36
0

# Operations on PLANETOPLOT objects `pp()` make it easy to show the difference or ratio between two PLANETOPLOT requests: this can be difference between two simulations, ratio between two variables, etc... The five operations -- plus minus multiply divide power -- are coded in the `pp()` class. Below we give several examples
# 
# This is done by setting up a `python` script or using `ipython` for interactive use. First import `pp()` class.

# In[46]:

from ppclass import pp


# Now perform two distinct requests and apply the `get()` method to load data from netCDF file(s). NB: we use the same data file as in the main tutorial.

# In[47]:

req1 = pp(file="diagfired.nc",var="tsurf",t=0.7).get()
req2 = pp(file="diagfired.nc",var="tsurf",t=0.9).get()


# Now create a new `pp()` object containing the difference between the two requests.

# In[48]:

diff = req2-req1


# It is then easy to plot the difference between the two requested fields! Simply call the `plot()` method for the `diff` object.

# In[49]:

diff.plot()
Example #37
0
#! /usr/bin/env python
from ppclass import pp

tsurf = pp()
tsurf.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
tsurf.var = "tsurf"
tsurf.x = None
tsurf.y = 10.
tsurf.t = 2.
tsurf.getdefineplot()

ps = pp()
ps << tsurf
ps.var = "ps"
ps.getdefineplot()

S = ps.func(tsurf)
S.p[0].linestyle = ""
S.p[0].marker = "h"
S.p[0].color = "g"
S.makeplot()

icetot = pp()
icetot << tsurf
icetot.var = "icetot"
icetot.getdefineplot()

S2 = icetot.func(tsurf)
S2.p[0].linestyle = ""
S2.p[0].marker = "D"
S2.p[0].color = "r"
Example #38
0
#! /usr/bin/env python
from ppclass import pp
import matplotlib.pyplot as mpl

icetot = pp(file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",
            var="icetot",
            t=0.5).getf()
mpl.pcolor(icetot)
mpl.show()
Example #39
0
#! /usr/bin/env python
import ppclass
import numpy as np

## POINTS
tablat, tablon = np.loadtxt("dune_lat_long.txt", unpack=True)
nnn = tablat.size
forplot = open('add_text.txt', 'w')
for iii in range(nnn):
    forplot.write("%+07.2f ; %+07.2f ; * ; r \n" % (tablon[iii], tablat[iii]))
forplot.close()

## MAP
pl = ppclass.pp()
pl.file = "/home/aymeric/Science/MODELES/MESOSCALE/LMD_MM_MARS/WPS_GEOG/surface_new.nc"
pl.var = "z0"
pl.proj = "robin"
pl.colorbar = "Greys"
pl.vmin = 1.e-2
pl.vmax = 2.
pl.showcb = False
pl.title = ""
pl.div = 40
pl.out = "png"
pl.filename = "z0dune"
pl.includedate = False
pl.getplot()

pl2 = ppclass.pp()
pl2 << pl
pl2.trans = 0.0
#! /usr/bin/env python
from ppclass import pp
import matplotlib.pyplot as mpl
icetot = pp(file="/home/aymeric/Big_Data/DATAPLOT/diagfired.nc",var="icetot",t=0.5).getf()
mpl.pcolor(icetot)
mpl.show()
Example #41
0
ti = 1
ti = 10
ti = 7
zi = 25. # in meters
zi = 130. #ok vert velo

deltaT = 3.
deltaT = 4.
grav = 3.72
tpottest = 195. #test potential temperature for finding height of katabatic layer
#tpottest = 188.
tpottest = 200.
#tpottest = 205.

### LOAD
tpot = pp(file=fi,var='tpot',t=ti,z=zi,verbose=True).getf()
Um = pp(file=fi,var='Um',t=ti,z=zi).getf()
Vm = pp(file=fi,var='Vm',t=ti,z=zi).getf()
W = pp(file=fi,var='W',t=ti,z=zi).getf()
PT,xx,yy,zz,tt = pp(file=fi,var='tpot',t=ti).getfd()
HGT = pp(file=fi,var='HGT',t=ti).getf()
potheight = pp(file=fi,var='HGT',t=ti).getf() # just to get an array the right size

### CALCULATE
vel = Um**2 + Vm**2
vel = np.sqrt(vel)
print "searching for height of katabatic layer"
for i in range(xx.shape[1]):
 for j in range(yy.shape[0]):
  w = np.where( PT[:,j,i] > tpottest)
  potheight[j,i] = zz[w][0]
Example #42
0
from ppplot import plot2d
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
import math as m

# arguments
from optparse import OptionParser ### TBR by argparse
parser = OptionParser()
(opt,args) = parser.parse_args()
if len(args) == 0: args = "histday.nc"
fi=args

# Pour l'evolution en un point
#------------------------------------------------------------------
fluxsurf,x,y,z,t = pp(file=fi,var="SWdnSFC",changetime="earth_calendar").getfd()
fluxtop = pp(file=fi,var="SWdnTOA",changetime="earth_calendar").getf()
t2m = pp(file=fi,var="t2m",changetime="earth_calendar").getf()
area = pp(file=fi,var="aire",changetime="earth_calendar").getf()
#------------------------------------------------------------------

lati = np.deg2rad(y[:,0])
weights = np.cos(lati)
fluxtop_zonal = fluxtop.mean(axis=2)
fluxtop_mean = np.average(fluxtop_zonal, axis=1, weights=weights)

#------------------------------------------------------------------
fig = plt.figure()
ax = fig.gca()
ax.set_ylabel("Eclairement moyen (W/m2)")
#ax.set_ylim([402.,404.])
Example #43
0
#! /usr/bin/env python
from ppclass import pp

# define object, file, var
m = pp()
m.file = "/home/aymeric/Big_Data/GALE/wrfout_d03_2024-06-09_00:00:00"
m.var = "W"

# define dimensions
m.x = "136.,139." # computing over x interval
m.y = -5. # setting a fixed y value
m.z = None # leaving z as a free dimension
m.t = [6.,9.,12.,15.,18.,21.,24.] # setting 4 fixed t values

# define settings
m.superpose = True # superpose 1D plots
m.verbose = True # making the programe verbose
#m.out = "pdf" # output format
m.colorbar = "spectral" # color cycle according to a color map

# get data and make plot with default settings
m.getplot()

# get potential temperature at same point. 
# don't plot it. do an operation on it.
tpot = pp()
tpot << m
tpot.var = "T"
tpot.get()
tpot = tpot + 220.
Example #44
0
                  action='store',
                  dest='yp',
                  type="int",
                  default=None,
                  help="y size of figure (integer)")
(opt, args) = parser.parse_args()
# -----------------------------------------------------------------------
clb = ["Greys","Blues","YlOrRd",\
       "jet","spectral","hot",\
       "RdBu","RdYlBu","Paired",\
       "gist_ncar","gist_rainbow","gist_stern"]
# -----------------------------------------------------------------------

for files in args:

    yeah = pp()
    yeah.quiet = True
    yeah.defineplot(loadfile=files)
    yeah.out = opt.out
    yeah.filename = opt.filename
    yeah.res = opt.res
    yeah.xp = opt.xp
    yeah.yp = opt.yp

    if opt.proj is not None:
        for plot in yeah.p:
            plot.proj = opt.proj
    if opt.colorbar is not None:
        yeah.colorbar = opt.colorbar
        for plot in yeah.p:
            plot.colorbar = opt.colorbar
Example #45
0
#! /usr/bin/env python
from ppclass import pp

u = pp()
u.file = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
u.var = "u"
u.t = "0.5,0.8"
u.z = "10,20"
u.getdefineplot(extraplot=2) # prepare 2 extraplots (do not show)
u.p[0].proj = "ortho"
u.p[0].title = "$u$"
u.makeplot()

v = pp()
v << u  # NB: initialize v object with u object's attributes
v.var = "v"
v.get()
v.plotin = u # plotin must be defined before .defineplot()
v.defineplot()
v.p[1].proj = "ortho"
v.p[1].title = "$v$"
v.makeplot() # plot within the previous one (do not show)

wind = u**2 + v**2
wind = wind**0.5
wind.plotin = v
wind.filename = "windspeed"
wind.defineplot()
wind.p[2].proj = "ortho"
wind.p[2].title = "$\sqrt{u^2+v^2}$"
wind.makeplot() # plot within the previous one (show because complete)
Example #46
0
           [90.,135.,180.],\
           [90.,135.,180.],\
           [90.,135.,180.]]
############################################

motif = r"$L_s = %.0f ^{\circ}$"

n = 0

for fff in ffftab:

    tabt = tabtabt[n]
    n = n + 1

    print fff
    fp = pp()
    #fp.quiet = True
    fp.verbose = True
    fp.file = folder + fff + suffix
    fp.var = "temp"
    fp.changetime = "correctls_noadd"
    fp.x = 0.
    fp.logy = True
    fp.invert = True
    fp.colorbar = "gist_rainbow_r"
    fp.xmin = -45.
    fp.xmax = 45.
    fp.ycoeff = 0.01
    fp.ymax = 50.
    fp.ymin = 2.e-3
    fp.vmin = 85.
Example #47
0
#! /usr/bin/env python

from ppclass import pp

#pp.py diagfi210_240_LT3_precast.nc -v psim -x 999 -t 0 \
# -Z -C seismic -N -20 -M 20 --xp 16 --yp 8 -m 1e-9 \
# -U "$10^9$ kg/s" -F "%.0f" --ymin 1 -T nighttime \
# -T daytime --ylabel "pressure (Pa)" -o psim_day_night \
# -O png -c psim -D 40

lvl = 60  #20
fac = 1.e-9

ps = pp()
ps.nopickle = True
ps.xp = 16
ps.yp = 8
ps.var = ["psim", "psim"]
ps.vargoal = ["main", "contour"]
ps.c = "psim"
ps.x = 999
ps.t = 0
ps.invert = True
ps.logy = True
ps.colorbar = "seismic"
ps.vmin = -lvl
ps.vmax = +lvl
ps.out = "png"
ps.div = 24
ps.ylabel = "pressure (Pa)"
ps.xlabel = "latitude"
Example #48
0
#fileAP="UHD_DRAG18days_DISSIP5000.nc"
#fileAP="DRAG90days_DISSIP50000_lat10_z5.nc"
#fileAP="DRAG90days_DISSIP2500_z5.nc"
fileAP = "DRAG90days_DISSIP10000_year7_743726340_512_z5.nc"
fileAP = "DRAG90days_DISSIP10000_year5-6_uv_z5_512_every400d.nc"
###############
computemass = False
#computemass = True
###############
#zzz = 15
#zzz = 8
###############

print "get full fields --> q"
verb = False
u4D, longit, latit, pniv, time = pp(file=fileAP, var="u", verbose=verb,
                                    z=zzz).getfd()
v4D = pp(file=fileAP, var="v", verbose=verb, z=zzz).getf()
print "   -- got shape", u4D.shape
lat = latit[:, 0]  # for further use

print "get axis characteristics"
timeaxis = (time.size > 1)
if pniv.size == 1:
    vertaxis = False
elif zzz is None:
    vertaxis = False
else:
    vertaxis = True

print "get zonal anomaly fields --> q*=q-[q]"
staru4D = pp(file=fileAP, var="u", verbose=verb, compute="pert_x",
Example #49
0
##########################################################################
var = ["151"]
fieldtype = "2d"
lev = ["9999."]
tim = ["00"]
date = ['01','09','2009','01','09','2009']
#area = "Whole"



date = ['01','04','2011','01','04','2011']


##########################################################################
nc = get_ecmwf (var, fieldtype, [-90.,90.], [-180.,180.], lev, date, tim) 
press = pp(file="output.nc",var="var"+var[0]).getf()



press = press / 1e2

pl = plot2d()
pl.f = press
#pl.trans = 0.0
pl.colorbar = "RdBu_r"
pl.c = press
pl.x = np.linspace(-180.,180.,press.shape[1])
pl.y = np.linspace(-90.,90.,press.shape[0])
pl.mapmode = True

pl.vmin = 950.
Example #50
0
#! /usr/bin/env python
from ppclass import pp
from ppplot import plot2d
from ppcompute import divort
import numpy as np

####################################################
fff = "/home/aymeric/Big_Data/DATAPLOT/diagfired.nc"
rad = 3389500
ttt = 1
zzz = 10.
#####################################################

# get wind fields
u = pp(file=fff, var="u", t=ttt, z=zzz).getf()
v = pp(file=fff, var="v", t=ttt, z=zzz).getf()
s = pp(file=fff, var="phisinit", t=ttt).getf()

# set latitude and longitude arrays
# -- asuming regular grid!
ny, nx = u.shape
lon = np.linspace(-180., 180., nx)
lat = np.linspace(90., -90., ny)

# compute vorticity and divergence
div, vorti = divort(u, v, lon, lat, rad)

##########
# figure #
##########
pl = plot2d()
Example #51
0
if opt.b is None:
    betaPV = 45. * m.pi / 180.
else:
    betaPV = [float(i) for i in opt.b][0]
# gammaPV
if opt.g is None:
    gammaPV = -9999
else:
    gammaPV = [float(i) for i in opt.g][0]

# Pour l'evolution en un point
#------------------------------------------------------------------

fluxsurf, x, y, z, t = pp(file=fi,
                          var="SWdnSFC",
                          x=xloc,
                          y=yloc,
                          changetime="earth_calendar").getfd()
fluxtop = pp(file=fi,
             var="SWdnTOA",
             x=xloc,
             y=yloc,
             changetime="earth_calendar").getf()
t2m = pp(file=fi, var="t2m", x=xloc, y=yloc,
         changetime="earth_calendar").getf()
sza = pp(file=fi, var="sza", x=xloc, y=yloc,
         changetime="earth_calendar").getf()
#------------------------------------------------------------------
doy = np.array([t[i].timetuple().tm_yday for i in range(0, len(t))])
pdeclin = 23.45 * np.sin(360. *
                         (284. + doy) / 365. * m.pi / 180.) * m.pi / 180.
Example #52
0
#! /usr/bin/env python
from ppclass import pp

thres = 0.1

ww = pp()
ww.xp = 24
ww.yp = 12
ww.file = "tata.nc"
ww.var = "E366"
ww.useindex = "1000"
ww.z = 0
ww.proj = "cyl"
ww.out = "jpg"  #"png"
ww.res = 100  #150 #300 #75
ww.fmt = "%.0f"
ww.colorbar = "gist_gray"
ww.quiet = True
ww.showcb = False
ww.div = 50  #10 #30
ww.vmin = -thres
ww.vmax = 1
#ww.trans = 0.5
ww.back = "blue_local"
ww.nopickle = True

# loop
nn = 360
nn = 25
tabcase = ["full", "np", "sp", "trop"]
tabcase = ["full"]
Example #53
0
#! /usr/bin/env python
from ppclass import pp

### LMD simulation results
### ----------------------
### set object
lmdu = pp()
### set file var coord
lmdu.file = 'LMD/wrfout_d01_2024-09-08_01:00:00_z'
lmdu.var = 'Um'
lmdu.x = -6.
lmdu.y = -2.
lmdu.t = 0.
### get data
lmdu.get()

### MRAMS simulation results
### ------------------------
### set object
mramsu = pp()
### get attributes from lmd object
mramsu << lmdu
### OK just change what changes in MRAMS
mramsu.file = 'MRAMS/mramsout_d01_2024-09-08_01:00:00_z'
mramsu.var = 'u_areo'
### get data
mramsu.get()

### THE SAME BUT FOR V
### ------------------
lmdv = pp()
Example #54
0
#! /usr/bin/env python
import ppclass
import numpy as np

## POINTS
tablat,tablon = np.loadtxt("dune_lat_long.txt",unpack=True)
nnn = tablat.size
forplot = open('add_text.txt', 'w')
for iii in range(nnn):
    forplot.write( "%+07.2f ; %+07.2f ; * ; r \n" % (tablon[iii],tablat[iii]) )
forplot.close()

## MAP
pl = ppclass.pp()
pl.file = "/home/aymeric/Science/MODELES/MESOSCALE/LMD_MM_MARS/WPS_GEOG/surface_new.nc"
pl.var = "z0"
pl.proj = "robin"
pl.colorbar = "Greys"
pl.vmin = 1.e-2
pl.vmax = 2. 
pl.showcb = False
pl.title = ""
pl.div = 40
pl.out = "png"
pl.filename = "z0dune"
pl.includedate = False
pl.getplot()

pl2 = ppclass.pp()
pl2 << pl
pl2.trans = 0.0