Example #1
0
def get_infer_results(outs_res, eval_type, catid):
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.

    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score. 
    """
    if outs_res is None or len(outs_res) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )
    infer_res = {}

    if 'bbox' in eval_type:
        box_res = []
        for outs in outs_res:
            box_res += get_det_res(outs['bbox'], outs['bbox_num'],
                                   outs['im_id'], catid)
        infer_res['bbox'] = box_res

    if 'mask' in eval_type:
        seg_res = []
        for outs in outs_res:
            seg_res += get_seg_res(outs['mask'], outs['bbox_num'],
                                   outs['im_id'], catid)
        infer_res['mask'] = seg_res

    return infer_res
Example #2
0
def get_infer_results(outs, catid):
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.

    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score. 
    """
    if outs is None or len(outs) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )

    im_id = outs['im_id']

    infer_res = {}
    if 'bbox' in outs:
        infer_res['bbox'] = get_det_res(outs['bbox'], outs['score'],
                                        outs['label'], outs['bbox_num'], im_id,
                                        catid)

    if 'mask' in outs:
        # mask post process
        infer_res['mask'] = get_seg_res(outs['mask'], outs['score'],
                                        outs['label'], outs['bbox_num'], im_id,
                                        catid)

    if 'segm' in outs:
        infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid)

    return infer_res
def get_infer_results(outs_res, eval_type, catid):
    """
    Get result at the stage of inference.
    The output format is dictionary containing bbox or mask result.

    For example, bbox result is a list and each element contains
    image_id, category_id, bbox and score. 
    """
    if outs_res is None or len(outs_res) == 0:
        raise ValueError(
            'The number of valid detection result if zero. Please use reasonable model and check input data.'
        )

    infer_res = {k: [] for k in eval_type}

    for i, outs in enumerate(outs_res):
        im_id = outs['im_id']
        im_shape = outs['im_shape']
        scale_factor = outs['scale_factor']

        if 'bbox' in eval_type:
            infer_res['bbox'] += get_det_res(outs['bbox'], outs['bbox_num'],
                                             im_id, catid)

        if 'mask' in eval_type:
            # mask post process
            infer_res['mask'] += get_seg_res(outs['mask'], outs['bbox_num'],
                                             im_id, catid)

    return infer_res