Example #1
0
def main():
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'train_feed' not in cfg:
        train_feed = create(main_arch + 'TrainFeed')
    else:
        train_feed = create(cfg.train_feed)

    if FLAGS.eval:
        if 'eval_feed' not in cfg:
            eval_feed = create(main_arch + 'EvalFeed')
        else:
            eval_feed = create(cfg.eval_feed)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            train_pyreader, feed_vars = create_feed(train_feed)
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)

    train_reader = create_reader(train_feed, cfg.max_iters * devices_num,
                                 FLAGS.dataset_dir)
    train_pyreader.decorate_sample_list_generator(train_reader, place)

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    if FLAGS.eval:
        eval_prog = fluid.Program()
        with fluid.program_guard(eval_prog, startup_prog):
            with fluid.unique_name.guard():
                model = create(main_arch)
                eval_pyreader, feed_vars = create_feed(eval_feed)
                fetches = model.eval(feed_vars)
        eval_prog = eval_prog.clone(True)

        eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
        eval_pyreader.decorate_sample_list_generator(eval_reader, place)

        # parse eval fetches
        extra_keys = []
        if cfg.metric == 'COCO':
            extra_keys = ['im_info', 'im_id', 'im_shape']
        if cfg.metric == 'VOC':
            extra_keys = ['gt_box', 'gt_label', 'is_difficult']
        eval_keys, eval_values, eval_cls = parse_fetches(
            fetches, eval_prog, extra_keys)

    # compile program for multi-devices
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = False
    sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn'
    # only enable sync_bn in multi GPU devices
    build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \
         and cfg.use_gpu
    train_compile_program = fluid.compiler.CompiledProgram(
        train_prog).with_data_parallel(loss_name=loss.name,
                                       build_strategy=build_strategy)
    if FLAGS.eval:
        eval_compile_program = fluid.compiler.CompiledProgram(eval_prog)

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'
    start_iter = 0
    if FLAGS.resume_checkpoint:
        checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint)
        start_iter = checkpoint.global_step()
    elif cfg.pretrain_weights and fuse_bn:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights)
    elif cfg.pretrain_weights:
        checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
    train_pyreader.start()
    start_time = time.time()
    end_time = time.time()

    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(cfg.save_dir, cfg_name)
    time_stat = deque(maxlen=cfg.log_iter)
    best_box_ap_list = [0.0, 0]  #[map, iter]
    for it in range(start_iter, cfg.max_iters):
        start_time = end_time
        end_time = time.time()
        time_stat.append(end_time - start_time)
        time_cost = np.mean(time_stat)
        eta_sec = (cfg.max_iters - it) * time_cost
        eta = str(datetime.timedelta(seconds=int(eta_sec)))
        outs = exe.run(train_compile_program, fetch_list=train_values)
        stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])}
        train_stats.update(stats)
        logs = train_stats.log()
        if it % cfg.log_iter == 0:
            strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format(
                it, np.mean(outs[-1]), logs, time_cost, eta)
            logger.info(strs)

        if it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1:
            save_name = str(it) if it != cfg.max_iters - 1 else "model_final"
            checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name))

            if FLAGS.eval:
                # evaluation
                results = eval_run(exe, eval_compile_program, eval_pyreader,
                                   eval_keys, eval_values, eval_cls)
                resolution = None
                if 'mask' in results[0]:
                    resolution = model.mask_head.resolution
                box_ap_stats = eval_results(results, eval_feed, cfg.metric,
                                            cfg.num_classes, resolution,
                                            is_bbox_normalized,
                                            FLAGS.output_eval)
                if box_ap_stats[0] > best_box_ap_list[0]:
                    best_box_ap_list[0] = box_ap_stats[0]
                    best_box_ap_list[1] = it
                    checkpoint.save(exe, train_prog,
                                    os.path.join(save_dir, "best_model"))
                logger.info("Best test box ap: {}, in iter: {}".format(
                    best_box_ap_list[0], best_box_ap_list[1]))

    train_pyreader.reset()
Example #2
0
def main():
    """
    Main evaluate function
    """
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'eval_feed' not in cfg:
        eval_feed = create(main_arch + 'EvalFeed')
    else:
        eval_feed = create(cfg.eval_feed)

    # define executor
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            pyreader, feed_vars = create_feed(eval_feed)
            fetches = model.eval(feed_vars)
    eval_prog = eval_prog.clone(True)

    reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
    pyreader.decorate_sample_list_generator(reader, place)

    # eval already exists json file
    if FLAGS.json_eval:
        logger.info(
            "In json_eval mode, PaddleDetection will evaluate json files in "
            "output_eval directly. And proposal.json, bbox.json and mask.json "
            "will be detected by default.")
        json_eval_results(eval_feed,
                          cfg.metric,
                          json_directory=FLAGS.output_eval)
        return
    # compile program for multi-devices
    if devices_num <= 1:
        compile_program = fluid.compiler.CompiledProgram(eval_prog)
    else:
        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        compile_program = fluid.compiler.CompiledProgram(
            eval_prog).with_data_parallel(build_strategy=build_strategy)

    # load model
    exe.run(startup_prog)
    if 'weights' in cfg:
        checkpoint.load_pretrain(exe, eval_prog, cfg.weights)

    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
    extra_keys = []
    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
        extra_keys = ['gt_box', 'gt_label', 'is_difficult']

    keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    results = eval_run(exe, compile_program, pyreader, keys, values, cls)
    # evaluation
    resolution = None
    if 'mask' in results[0]:
        resolution = model.mask_head.resolution
    eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution,
                 is_bbox_normalized, FLAGS.output_eval, cfg.map_type)
Example #3
0
def main():
    """
    Main evaluate function
    """
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'eval_feed' not in cfg:
        eval_feed = create(main_arch + 'EvalFeed')
    else:
        eval_feed = create(cfg.eval_feed)

    # define executor
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            pyreader, feed_vars = create_feed(eval_feed)
            fetches = model.eval(feed_vars)
    eval_prog = eval_prog.clone(True)

    reader = create_reader(eval_feed)
    pyreader.decorate_sample_list_generator(reader, place)

    # compile program for multi-devices
    if devices_num <= 1:
        compile_program = fluid.compiler.CompiledProgram(eval_prog)
    else:
        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        compile_program = fluid.compiler.CompiledProgram(
            eval_prog).with_data_parallel(build_strategy=build_strategy)

    # load model
    exe.run(startup_prog)
    if 'weights' in cfg:
        checkpoint.load_pretrain(exe, eval_prog, cfg.weights)

    extra_keys = []
    if 'metric' in cfg and cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']

    keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)

    results = eval_run(exe, compile_program, pyreader, keys, values, cls)
    # evaluation
    resolution = None
    if 'mask' in results[0]:
        resolution = model.mask_head.resolution
    eval_results(results, eval_feed, cfg.metric, resolution, FLAGS.output_file)