def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'log_iter' not in cfg: cfg.log_iter = 20 # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'train_feed' not in cfg: train_feed = create(main_arch + 'TrainFeed') else: train_feed = create(cfg.train_feed) if FLAGS.eval: if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) train_pyreader, feed_vars = create_feed(train_feed) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) train_reader = create_reader(train_feed, cfg.max_iters * devices_num, FLAGS.dataset_dir) train_pyreader.decorate_sample_list_generator(train_reader, place) # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) eval_pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir) eval_pyreader.decorate_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_box', 'gt_label', 'is_difficult'] eval_keys, eval_values, eval_cls = parse_fetches( fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' # only enable sync_bn in multi GPU devices build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu train_compile_program = fluid.compiler.CompiledProgram( train_prog).with_data_parallel(loss_name=loss.name, build_strategy=build_strategy) if FLAGS.eval: eval_compile_program = fluid.compiler.CompiledProgram(eval_prog) exe.run(startup_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_pyreader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_iter) best_box_ap_list = [0.0, 0] #[map, iter] for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(train_compile_program, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0: strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1: save_name = str(it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation results = eval_run(exe, eval_compile_program, eval_pyreader, eval_keys, eval_values, eval_cls) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution box_ap_stats = eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_pyreader.reset()
def main(): """ Main evaluate function """ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) # define executor place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir) pyreader.decorate_sample_list_generator(reader, place) # eval already exists json file if FLAGS.json_eval: logger.info( "In json_eval mode, PaddleDetection will evaluate json files in " "output_eval directly. And proposal.json, bbox.json and mask.json " "will be detected by default.") json_eval_results(eval_feed, cfg.metric, json_directory=FLAGS.output_eval) return # compile program for multi-devices if devices_num <= 1: compile_program = fluid.compiler.CompiledProgram(eval_prog) else: build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False compile_program = fluid.compiler.CompiledProgram( eval_prog).with_data_parallel(build_strategy=build_strategy) # load model exe.run(startup_prog) if 'weights' in cfg: checkpoint.load_pretrain(exe, eval_prog, cfg.weights) assert cfg.metric in ['COCO', 'VOC'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_box', 'gt_label', 'is_difficult'] keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() results = eval_run(exe, compile_program, pyreader, keys, values, cls) # evaluation resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, cfg.map_type)
def main(): """ Main evaluate function """ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) # define executor place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) reader = create_reader(eval_feed) pyreader.decorate_sample_list_generator(reader, place) # compile program for multi-devices if devices_num <= 1: compile_program = fluid.compiler.CompiledProgram(eval_prog) else: build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False compile_program = fluid.compiler.CompiledProgram( eval_prog).with_data_parallel(build_strategy=build_strategy) # load model exe.run(startup_prog) if 'weights' in cfg: checkpoint.load_pretrain(exe, eval_prog, cfg.weights) extra_keys = [] if 'metric' in cfg and cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys) results = eval_run(exe, compile_program, pyreader, keys, values, cls) # evaluation resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution eval_results(results, eval_feed, cfg.metric, resolution, FLAGS.output_file)