def plot_candidate_sheet(rating_objects, pdm_cand_id, cand_ratings, description): plot_utils.beginplot("cand_rating_report%s(%d).ps" % (currdatetime.strftime('%y%m%d'),pdm_cand_id), vertical=True) ppgplot.pgtext(0,1,"%d: %s" % (pdm_cand_id, description)) top = 0.5 first = True for ratobj, rating in zip(rating_objects,cand_ratings): if (top - PARASPACING) < 0: if first: # # Add P, DM, subints, subbands? # pfd = rating_utils.get_pfd_by_cand_id(pdm_cand_id) prof = rating_utils.prep_profile(pfd) ppgplot.pgsvp(0.10, 0.90, 0.60, 0.90) ppgplot.pgswin(0, NUMPHASE, 1.1*np.min(prof), 1.1*np.max(prof)) ppgplot.pgbox('BCNTS', 0.25,5,'BC',0.0,0) onephase = np.linspace(0,1,prof.size, endpoint=False) manyphase = np.resize(onephase,prof.size*NUMPHASE)+np.arange(0,NUMPHASE).repeat(prof.size) ppgplot.pgline(manyphase, np.resize(prof, (NUMPHASE*prof.size,))) first = False plot_utils.nextpage(vertical=True) ppgplot.pgtext(0,1,"%d: %s (cont'd)" % (pdm_cand_id, description)) top = 0.9 ppgplot.pgtext(0,top, '%s: %s' % (ratobj.name, rating)) top -= PARASPACING if first: pfd = rating_utils.get_pfd_by_cand_id(pdm_cand_id) prof = rating_utils.prep_profile(pfd) ppgplot.pgsvp(0.10, 0.90, 0.60, 0.90) ppgplot.pgswin(0, NUMPHASE, 1.1*np.min(prof), 1.1*np.max(prof)) ppgplot.pgbox('BCNTS', 0.25,5,'BC',0.0,0) ppgplot.pgline(np.linspace(0,NUMPHASE,prof.size*NUMPHASE), np.resize(prof, (NUMPHASE*prof.size,)))
def plotsigsff(sig, sf, file, nbin): psplot = file + ".ps" psplotinit(psplot) tot = N.ones(len(sf), 'f') (sigbin, sfbin) = my.binitsumequal(sig, sf, nbin) (sigbin, totbin) = my.binitsumequal(sig, tot, nbin) print sfbin print totbin (sff, sfferr) = my.ratioerror(sfbin, totbin) ppgplot.pgbox("", 0.0, 0, "L", 0.0, 0) ymin = -.05 ymax = 1.05 xmin = min(sig) - 10. #xmax=max(sig)-200. xmax = 350. ppgplot.pgenv(xmin, xmax, ymin, ymax, 0) ppgplot.pglab("\gS\d5\u (gal/Mpc\u2\d)", "Fraction EW([OII])>4 \(2078)", "") ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width sig = N.array(sig, 'f') sff = N.array(sff, 'f') ppgplot.pgsci(2) ppgplot.pgline(sigbin, sff) ppgplot.pgsci(1) ppgplot.pgpt(sigbin, sff, 17) my.errory(sigbin, sff, sfferr) ppgplot.pgend()
def plotgal(xg,yg,final,finalsf,ncl): ppgplot.pgslw(6) ppgplot.pgsls(1) xmin = (-1.*c.pscale[ncl]*(c.xc[ncl]-1)) xmax = (c.pscale[ncl]*(c.xmax[ncl]-c.xc[ncl])) ymin = (-1.*c.pscale[ncl]*(c.yc[ncl]-1)) ymax = (c.pscale[ncl]*(c.ymax[ncl]-c.yc[ncl])) ppgplot.pgbox("",0.0,0,"L",0.0,0) dx=5. ppgplot.pgenv(xmin-dx,xmax+dx,ymin-dx,ymax+dx,0) ppgplot.pglab("\gD DEC (\")","\gD RA (\")","") ppgplot.pgtext(-4,-4,"X") r = (0.5*c.r200pix[ncl]*c.pscale[ncl]) ppgplot.pgslw(1) ppgplot.pgsls(2) ppgplot.pgsfs(2) ppgplot.pgcirc(0,0,r) #print "cluster ",ncl," r200: ",c.r200pix[ncl],c.r200Mpc[ncl], " Mpc" ppgplot.pgslw(3) ppgplot.pgsls(1) x = (xg - c.xc[ncl])*c.pscale[ncl] y = (yg - c.yc[ncl])*c.pscale[ncl] x = (N.compress((final > 0) & (finalsf < 1), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf < 1), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,22) x = (N.compress((final > 0) & (finalsf > 0), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf > 0), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,18)
def xysimple(x, y, xlabel, ylabel): xmax = max(x) xmin = min(x) ymax = max(y) ymin = min(y) ppgplot.pgbox("", 0.0, 0, "", 0.0, 0) ppgplot.pgenv(xmin, xmax, ymin, ymax, 0) ppgplot.pglab(xlabel, ylabel, "") ppgplot.pgpt(x, y, 3)
def plotdVdz(): nv = 3. nr = 1. ppgplot.pgbeg("dVdz.ps/vcps", 1, 1) #color port. ppgplot.pgpap(8., 1.25) ppgplot.pgpage ppgplot.pgsch(1.2) #font size ppgplot.pgslw(3) #line width # 1st panel with symbols w/ stddev errorbars x1 = .15 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .425 y3 = .575 y4 = .85 xlabel = 14.1 - 14. ylabel = 1.15 schdef = 1.2 slwdef = 4 ppgplot.pgsch(schdef) xmin = 0. xmax = 1.1 ymin = 0. ymax = 1.2 ppgplot.pgsvp(x1, x4, y1, y4) #sets viewport ppgplot.pgslw(slwdef) #line width ppgplot.pgswin(xmin, xmax, ymin, ymax) #axes limits ppgplot.pgbox('bcnst', .2, 2, 'bcvnst', .2, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "z") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "(1/DH)\u3\d c dV\dc\u/dv/d\gW") z = N.arange(0., 5., .1) beta = ((1 + z)**2 - 1) / ((1 + z)**2 + 1) dV = N.zeros(len(z), 'd') for i in range(len(z)): #dz=dv/(1+z[i])*(1- ((1+z[i])**2 -1)/((1+z[i])**2+1))**(-2) #z1=z[i]-0.5*dz #z2=z[i]+0.5*dz #dV[i]=my.dL(z2,h) - my.dL(z1,h) dA = my.DA(z[i], h) * 206264. / 1000. dV[i] = DH * (1 + z[i]) * (dA)**2 / (my.E( z[i])) / (1 - beta[i])**2 / DH**3 #dV[i]=DH*(1+z[i])**2*(dA)**2/(my.E(z[i]))/DH**3#for comparison w/Hogg if z[i] < 1: print i, z[i], dV[i], dV[i]**(1. / 3.) ppgplot.pgline(z, dV) ppgplot.pgend()
def terminatePlot(self): if not self.plotDeviceIsOpened: raise ValueError("You have not yet opened a PGPLOT device.") if self._drawBox: pgplot.pgsci(1) pgplot.pgbox(self._xAxisOptions, 0.0, 0, self._yAxisOptions, 0.0, 0) pgplot.pglab(self.xLabel, self.yLabel, self.title) pgplot.pgend() self.plotDeviceIsOpened = False
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time subplot for the spd plots. Input: dms: list of dms of single pulse events to be plotted. times: list of times of single pulse events to be plotted. sigmas: list of sigmas of single pulse events to be plotted. dm_arr: array of dms of the main single pulse group (plotted in black). sigma_arr: array of sigmas of the main single pulse group (plotted in black). time_arr: array of times of single pulse group (plotted in black). Total_observed_time: float : Total observation time xwin: True or False. Use xwin or vcps window. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def plotold(): xmin=2.2 xmax=3.2 ymin=-2.5 ymax=-.5 psplotinit('fSsigma3Gyr.ps') ppgplot.pgbox("",0.0,0,"",0.0,0) ppgplot.pgenv(xmin,xmax,ymin,ymax,0,30) ppgplot.pglab("\gs (km/s)",'fS(10\u11\d:10\u13\d)',"") ppgplot.pgsci(1) ppgplot.pgline(sigma,frac) ppgplot.pgsls(2) ppgplot.pgsci(2) ppgplot.pgline(sigma08,frac08) ppgplot.pgsls(1) ppgplot.pgsci(1) ppgplot.pgend() xmin=2.2 xmax=3.2 ymin=11. ymax=14.2 psplotinit('maccretsigma3Gyr.ps') ppgplot.pgbox("",0.0,0,"",0.0,0) ppgplot.pgenv(xmin,xmax,ymin,ymax,0,30) ppgplot.pglab("\gs (km/s)",'M\dacc\u (M\d\(2281)\u)',"") ppgplot.pgsci(1) ppgplot.pgline(sigma,maccret) ppgplot.pgsls(2) ppgplot.pgsci(2) ppgplot.pgline(sigma08,maccret08) ppgplot.pgsls(1) ppgplot.pgsci(1) mylines=N.arange(-20.,20.,.4) mylineswidth=3 ppgplot.pgsls(4) ppgplot.pgslw(mylineswidth) x=N.arange(0.,5.,1.) lines=mylines for y0 in lines: y=3*x +y0 ppgplot.pgline(x,y) ppgplot.pgsls(1) ppgplot.pgend() os.system('cp maccretsigma.ps /Users/rfinn/SDSS/paper/.') os.system('cp fSsigma.ps /Users/rfinn/SDSS/paper/.')
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time subplot for the spd plots. Input: dms: list of dms of single pulse events to be plotted. times: list of times of single pulse events to be plotted. sigmas: list of sigmas of single pulse events to be plotted. dm_arr: array of dms of the main single pulse group (plotted in black). sigma_arr: array of sigmas of the main single pulse group (plotted in black). time_arr: array of times of single pulse group (plotted in black). Total_observed_time: float : Total observation time xwin: True or False. Use xwin or vcps window. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def makeplot(): psplotinit("noise.ps") DATAMIN = 0. DATAMAX = 15. ppgplot.pgbox("", 0.0, 0, "L", 0.0, 0) #print "making graph, ncl = ",ncl path = os.getcwd() f = path.split('/') #print path #print f prefix = f[4] title = prefix ymin = -.05 ymax = max(aveaperr) + .1 #ymax=10. ppgplot.pgenv(DATAMIN, DATAMAX, ymin, ymax, 0) ppgplot.pglab("linear size N of aperture (pixel)", "rms in Sky (ADU/s)", title) ppgplot.pgsci(2) #red ppgplot.pgslw(4) #line width x = N.sqrt(avearea) y = aveaperr ppgplot.pgpt(x, y, 7) #errory(x,y,erry) ppgplot.pgsci(1) #black #ppgplot.pgpt(isoarea,fluxerriso,3) #x1=N.sqrt(contsubisoarea) #y1=contsuberr #x1=N.sqrt(isoarea) #y1=fluxerriso #y=n*y1 #ppgplot.pgpt(x1,y1,1) #ppgplot.pgsci(4)#blue #ppgplot.pgpt(x1,y,1) #ppgplot.pgsci(1)#black x = N.arange(0, 50, 1) y = x * (a + b * a * x) #y=N.sqrt(x)*.02 ppgplot.pgline(x, y) #errory(x,y,erry) ppgplot.pgend()
def plotsig10sffall(sigspec, sigphot, sf, file, nbin): psplot = file + ".ps" psplotinit(psplot) ppgplot.pgbox("", 0.0, 0, "L", 0.0, 0) ymin = -.01 ymax = 1.01 #xmin=min(sigspec)-10. #xmax=max(sig)-200. #xmax=400. xmin = -1. xmax = 2.7 ppgplot.pgenv(xmin, xmax, ymin, ymax, 0, 10) ppgplot.pglab("\gS\d10\u (gal/Mpc\u2\d)", "Fraction EW([OII])>4 \(2078)", "") ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width tot = N.ones(len(sf), 'f') (sigbin, sfbin) = my.binitsumequal(sigspec, sf, nbin) (sigbin, totbin) = my.binitsumequal(sigspec, tot, nbin) (sff, sfferr) = my.ratioerror(sfbin, totbin) #sig=N.array(sig,'f') #sff=N.array(sff,'f') ppgplot.pgsci(2) sigbin = N.log10(sigbin) ppgplot.pgline(sigbin, sff) ppgplot.pgsci(1) ppgplot.pgpt(sigbin, sff, 17) my.errory(sigbin, sff, sfferr) (sigbin, sfbin) = my.binitsumequal(sigphot, sf, nbin) (sigbin, totbin) = my.binitsumequal(sigphot, tot, nbin) (sff, sfferr) = my.ratioerror(sfbin, totbin) #sig=N.array(sig,'f') #sff=N.array(sff,'f') ppgplot.pgslw(4) #line width ppgplot.pgsci(4) sigbin = N.log10(sigbin) ppgplot.pgline(sigbin, sff) ppgplot.pgsci(1) ppgplot.pgpt(sigbin, sff, 21) #my.errory(sigbin,sff,sfferr) ppgplot.pgend()
def plotsighaall(sig, psig, o2b, file, nbin): o2b = N.array(o2b, 'f') sig = N.array(sig, 'f') psig = N.array(psig, 'f') #o2b=o2b+4. o2 = N.compress(o2b > -500., o2b) sig = N.compress(o2b > -500., sig) psig = N.compress(o2b > -500., psig) psplot = file + ".ps" psplotinit(psplot) #ppgplot.pgsch(0.7) ppgplot.pgslw(7) (sigbin, o2bin) = my.binit(sig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgswin(-2., 2., -5., 20.) ppgplot.pgbox('blcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW(H\ga) (\(2078))') ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgpt(sigbin, o2bin, 17) ppgplot.pgpt(N.log10(sig), o2, 1) #my.errory(sigbin,o2bin,yerr) #print 'dude2', sigbin, o2bin ppgplot.pgsci(2) ppgplot.pgline(sigbin, o2bin) (sigbin, o2bin) = my.binit(psig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgsci(1) ppgplot.pgpt(sigbin, o2bin, 21) #my.errory(sigbin,o2bin,yerr) ppgplot.pgsci(4) ppgplot.pgline(sigbin, o2bin) ppgplot.pgsci(1) ppgplot.pgend()
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0) / snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def dm_time_plot(dms, times, sigmas, dm_arr, sigma_arr, time_arr, Total_observed_time, xwin): """ Plot DM vs Time. """ min_dm = Num.min(dms) max_dm = Num.max(dms) ppgplot.pgsvp(0.48, 0.97, 0.1, 0.54) ppgplot.pgswin(0, Total_observed_time, min_dm, max_dm) ppgplot.pgsch(0.8) ppgplot.pgslw(3) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgslw(3) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") snr_range = 12.0 cand_symbols = [] cand_symbols_group = [] for i in range(len(sigmas)): if sigmas[i] > 20.00: sigmas[i] = 20.0 cand_symbol = int((sigmas[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols.append(min(cand_symbol, 26)) cand_symbols = Num.array(cand_symbols) for i in range(len(dm_arr)): cand_symbol = int((sigma_arr[i] - 5.0)/snr_range * 6.0 + 20.5) cand_symbols_group.append(min(cand_symbol, 26)) cand_symbols_group = Num.array(cand_symbols_group) dms = Num.array(dms) times = Num.array(times) dm_arr = Num.array(dm_arr) time_arr = Num.array(time_arr) for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgshls(1, 0.0, 0.5, 0.0) ppgplot.pgpt(times[inds], dms[inds], ii) for ii in [26, 25, 24, 23, 22, 21, 20]: inds_1 = Num.nonzero(cand_symbols_group == ii)[0] if xwin: ppgplot.pgshls(1, 0.0, 0.8, 0.0) else: ppgplot.pgshls(1, 0.0, 0.0, 0.0) ppgplot.pgpt(time_arr[inds_1], dm_arr[inds_1], ii)
def compdiff(x, y, xlabel, ylabel): xmax = max(x) xmin = min(x) ymax = max(y) ymin = min(y) ave = N.average(N.compress((x < 21) & (im1.sn > 3), y)) std = scipy.stats.std(N.compress((x < 21) & (im1.sn > 3), y)) ppgplot.pgbox("", 0.0, 0, "", 0.0, 0) ppgplot.pgenv(xmin, xmax, -.8, .8, 0) ppgplot.pglab(xlabel, ylabel, "") ppgplot.pgpt(x, y, 3) x = N.arange((int(xmin) - 1), (int(xmax) + 2), 1) y = ave * x / x ppgplot.pgsci(2) ppgplot.pgline(x, y) ppgplot.pgsci(1) y1 = y - std ppgplot.pgline(x, y1) y1 = y + std ppgplot.pgline(x, y1)
def plotsigo2(sig, o2, file, nbin): psplot = file + ".ps" psplotinit(psplot) (sigbin, o2bin) = my.binit(sig, o2, nbin) ppgplot.pgbox("", 0.0, 0, "L", 0.0, 0) ymin = -10. ymax = 2. xmin = min(sig) - 10. #xmax=max(sig)-200. xmax = 350. ppgplot.pgenv(xmin, xmax, ymin, ymax, 0) ppgplot.pglab("\gS\d5\u (gal/Mpc\u2\d)", "EW([OII]) (\(2078))", "") ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width sig = N.array(sig, 'f') o2 = N.array(o2, 'f') ppgplot.pgpt(sig, o2, 1) ppgplot.pgsci(2) ppgplot.pgline(sigbin, o2bin) ppgplot.pgsci(1) ppgplot.pgend()
def sub1plotngalmcl(x, y1, y2): schdef = 1.2 slwdef = 4 ppgplot.pgsch(schdef) xmin = -.5 xmax = 1. ymin = 0. ymax = 60. #nbin=5 ppgplot.pgslw(slwdef) #line width ppgplot.pgswin(xmin, xmax, ymin, ymax) #axes limits ppgplot.pgbox('bcnlst', 1.0, 0, 'bcvnst', 10., 2) #tickmarks and labeling ppgplot.pgmtxt( 'b', 2.5, 0.5, 0.5, "log\d10\u(10\u14\d M\dhalo\u/h\u-1\d M\d\(2281)\u)") #xlabel ppgplot.pgmtxt('l', 2.1, 0.5, 0.5, "N\dgal\u") (xbin, ybin, ybinerr) = my.biniterr(x, y1, nbin) print y1 print 'ybin for y1 = ', ybin xbin = N.log10( xbin) + 12. - 14. #add back 10^12 Msun, then divide by 10^14 ppgplot.pgsch(1.5) ppgplot.pgpt(xbin, ybin, 7) ppgplot.pgslw(3) ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.) #my.errory(xbin,ybin,ybinerr) (xbin, ybin, ybinerr) = my.biniterr(x, y2, nbin) print y2 print 'ybin = ', ybin xbin = N.log10( xbin) + 12. - 14. #add back 10^12 Msun, then divide by 10^14 ppgplot.pgsch(1.75) ppgplot.pgpt(xbin, ybin, 17) ppgplot.pgsch(schdef) ppgplot.pgerrb(6, xbin, ybin, ybinerr, 2.) ppgplot.pgslw(slwdef)
def plotoutlierpos(): dm = 0.01 xlabel = "x position of outliers" ylabel = "y position of outliers" delta = abs(im1.magap5 - im2.magap5) x = N.compress(delta > dm, im1.x) y = N.compress(delta > dm, im1.y) xmax = max(x) xmin = min(x) ymax = max(y) ymin = min(y) ppgplot.pgbox("", 0.0, 0, "", 0.0, 0) #ppgplot.pgenv(xmin,xmax,ymin,ymax,0) ppgplot.pgenv(0, 920, 0, 875, 0) ppgplot.pglab(xlabel, ylabel, "") ppgplot.pgpt(x, y, 3) x = N.compress(delta > dm, im2.x) y = N.compress(delta > dm, im2.y) diff = N.compress(delta > dm, delta) ppgplot.pgpt(x, y, 4) for i in range(len(x)): print x[i], y[i], diff[i]
def plotsigo2all(sig, psig, o2b, file, nbin): #o2=N.zeros(len(o2b),'f') #for i in range(len(o2b)): #print i, sig[i], psig[i], o2b[i] # if o2b[i] < 0: # o2[i]=-1*o2b[i] #print "hey", o2[i] o2 = o2b psplot = file + ".ps" psplotinit(psplot) ppgplot.pgsch(0.7) (sigbin, o2bin) = my.binit(sig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgswin(-1., 3., -.5, 10.) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u (gal/Mpc\u2\d)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'EW([OII]) (\(2078))') ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgsci(2) ppgplot.pgpt(sigbin, o2bin, 17) #print 'dude2', sigbin, o2bin ppgplot.pgline(sigbin, o2bin) (sigbin, o2bin) = my.binit(psig, o2, nbin) #print 'dude', sigbin, o2bin sigbin = N.log10(sigbin) ppgplot.pgsci(4) ppgplot.pgpt(sigbin, o2bin, 21) ppgplot.pgline(sigbin, o2bin) ppgplot.pgsci(1) ppgplot.pgend()
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() # ppgplot arrays tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Loop over identifications for line in lines: # Decode id = satid(line) # Skip slow moving objects drdt = np.sqrt(id.dxdt**2 + id.dydt**2) if drdt < drdtmin: continue # Extract significant pixels x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) #ppgplot.pgopen("/xs") ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if (3600.0 * ff.crres[0] < 1e-3 ) | (3600.0 * ff.crres[1] < 1e-3) | ( ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0): ppgplot.pgsci(2) else: ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.vmax, ff.vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgmove(xmin, ymin) ppgplot.pgdraw(xmax, ymax) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend() elif id.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = id.x0 + id.dxdt * tmid ymid = id.y0 + id.dydt * tmid ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: continue # Skip if point is outside selection area if inside_selection(id, xmid, ymid, x0, y0) == False: continue # Format IOD line cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) plot_selection(id, xmid, ymid) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17) ppgplot.pgmove(id.x0, id.y0) ppgplot.pgdraw(id.x1, id.y1) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend()
ppgplot.pgpap(0.0, 1.0) ppgplot.pgpage() # Give z and w values and power change ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin + imfract, 1.0 - margin / 2) ppgplot.pgswin(0.0, 1.0, 0.0, 1.0) ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp) ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp) ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z) ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w) # freq cut ppgplot.pgsvp(margin, margin + imfract, margin + imfract, 1.0 - margin / 2) ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1) ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0) ppgplot.pgline(rs, freqcut) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power") #fdot cut ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin, margin + imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgline(fdotcut, zs) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power") # f-fdot image ppgplot.pgsvp(margin, margin + imfract, margin, margin + imfract) ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs)) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby)
#################################################################### ppgplot.pgpaper(8,1.25) # window/paper size (width(inch), aspect) ppgplot.pgscf(2) # characte font (1: normal, 2: roman, 3: italic, 4: script) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.89) # viewport in the window (relative) ppgplot.pglab("", "", "Local Time [hour]") ppgplot.pgsvp(0.12, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pglabel("", "Airmass", "") # label settingoto s ppgplot.pgsch(1.0) # character height (size) ppgplot.pgslw(3) # line width ppgplot.pgsvp(0.15, 0.9, 0.53, 0.88) # viewport in the window (relative) ppgplot.pgswin(t_min, t_max, a_max, a_min) # MIN,MAX of coordinate ppgplot.pgbox('BCTS', 0.0, 0, 'BCTSNV1', 0.1, 0) # coordinate settings ppgplot.pgbox('0', 0.0, 0, 'BCTSMV1', 0.1, 0) # coordinate settings # Put Header/ Axes Label ##################################################################### ##################################################################### # READ USER INPUT ##################################################################### year = sys.argv[2]#ARGV[1] month = sys.argv[3]#ARGV[2] day = sys.argv[4]#ARGV[3] # print "TODAY year month day\n " # Read LMST ########################################################
def main(args): with open(os.path.join(os.path.dirname(__file__), 'precisiondata.cpickle')) as filedata: exptimes, crosspoints, satpoints = pickle.load(filedata) x_range = [9, 14] interpcross = interp1d(exptimes, crosspoints, kind='linear') interpsat = interp1d(exptimes, satpoints, kind='linear') N = 5 colours = np.arange(2, 2 + N, 1) exptimes = np.arange(1, N + 1) * 10 if args.besancon: all_vmags = get_besancon_mag_data() yhigh = 0.3 title = 'Besancon' else: all_vmags = get_nomad_mag_data() yhigh = 0.4 title = 'NOMAD' ytot = yhigh * len(all_vmags) with pgh.open_plot(args.output): pg.pgvstd() pg.pgswin(x_range[0], x_range[1], 0, yhigh) for exptime, colour in zip(exptimes, colours): satpoint = interpsat(exptime) crosspoint = interpcross(exptime) selected = all_vmags[(all_vmags > satpoint) & (all_vmags <= crosspoint)] print(exptime, len(selected)) xdata, ydata = cumulative_hist(np.array(selected), min_val=x_range[0], max_val=x_range[1], norm=len(all_vmags)) ydata /= float(len(all_vmags)) with pgh.change_colour(colour): pg.pgbin(xdata, ydata, False) pg.pgbox('bcnst', 0, 0, 'bcnst', 0, 0) pg.pglab(r'V magnitude', 'High precision fraction', title) # Label the right hand side pg.pgswin(x_range[0], x_range[1], 0, ytot) pg.pgbox('', 0, 0, 'smt', 0, 0) pg.pgmtxt('r', 2., 0.5, 0.5, 'N') #Â Create the legend pg.pgsvp(0.7, 0.9, 0.1, 0.3) pg.pgswin(0., 1., 0., 1.) for i, (exptime, colour) in enumerate(zip(exptimes, colours)): yval = 0.1 + 0.8 * i / len(exptimes) with pgh.change_colour(colour): pg.pgline(np.array([0.2, 0.4]), np.ones(2) * yval) pg.pgtext(0.5, yval, r'{:d} s'.format(exptime))
def plothistsfr(): DATAMIN = -4. DATAMAX = 15. NBIN = int((DATAMAX-DATAMIN)*2.) #print "ngal = ",len(g0.sfr) ppgplot.pgbox("",0.0,0,"L",0.0,0) ppgplot.pgenv(DATAMIN,DATAMAX,0,45,0) ppgplot.pglab("SFR (h\d100\u\u-2\d M\d\(2281)\u yr\u-1 \d)","Number of Galaxies","") ppgplot.pgsls(1)#dotted ppgplot.pgslw(4) #line width #ppgplot.pgsci(4) #x=N.compress((abs(g0.ew) > ewmin),g0.sfr) x=N.compress((g0.final > 0),g0.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) xlabel = 6.5 ylabel = 38. ystep = 3. dy=.4 dxl=3 dxr=.5 ppgplot.pgslw(deflw) #line width ppgplot.pgtext(xlabel,ylabel,"CL1040") xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgslw(4) #line width ppgplot.pgline(xlin,ylin) ppgplot.pgslw(5) ppgplot.pgsls(3)#dot-dash-dot-dash #ppgplot.pgsci(3) #x=N.compress((abs(g1.ew) > ewmin),g1.sfr) x=N.compress((g1.final > 0),g1.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) ylabel = ylabel - ystep xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgline(xlin,ylin) ppgplot.pgsls(1) ppgplot.pgslw(deflw) ppgplot.pgtext(xlabel,ylabel,"CL1054-12") ppgplot.pgsls(1)#dot-dash-dot-dash #ppgplot.pgsci(2) ppgplot.pgslw(2) #line width #x=N.compress((abs(g2.ew) > ewmin),g2.sfr) x=N.compress((g2.final > 0),g2.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) ylabel = ylabel - ystep ppgplot.pgslw(deflw) #line width ppgplot.pgtext(xlabel,ylabel,"CL1216") xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgslw(2) #line width ppgplot.pgline(xlin,ylin) #print "Number in g2.ratios = ",len(g2.ratio) #for ratio in g2.ratio: # print ratio #drawbinned(x,y,5) ppgplot.pgsci(1)
def joy_division_plot(pulses, timeseries, downfactor=1, hgt_mult=1): """Plot each pulse profile on the same plot separated slightly on the vertical axis. 'timeseries' is the Datfile object dissected. Downsample profiles by factor 'downfactor' before plotting. hgt_mult is a factor to stretch the height of the paper. """ first = True ppgplot.pgbeg("%s.joydiv.ps/CPS" % \ os.path.split(timeseries.basefn)[1], 1, 1) ppgplot.pgpap(10.25, hgt_mult*8.5/11.0) # Letter landscape # ppgplot.pgpap(7.5, 11.7/8.3) # A4 portrait, doesn't print properly ppgplot.pgiden() ppgplot.pgsci(1) # Set up main plot ppgplot.pgsvp(0.1, 0.9, 0.1, 0.8) ppgplot.pglab("Profile bin", "Single pulse profiles", "") to_plot = [] xmin = 0 xmax = None ymin = None ymax = None for pulse in pulses: vertical_offset = (pulse.number-1)*JOYDIV_SEP copy_of_pulse = pulse.make_copy() if downfactor > 1: # Interpolate before downsampling interp = ((copy_of_pulse.N/downfactor)+1)*downfactor copy_of_pulse.interpolate(interp) copy_of_pulse.downsample(downfactor) # copy_of_pulse.scale() if first: summed_prof = copy_of_pulse.profile.copy() first = False else: summed_prof += copy_of_pulse.profile prof = copy_of_pulse.profile + vertical_offset min = prof.min() if ymin is None or min < ymin: ymin = min max = prof.max() if ymax is None or max > ymax: ymax = max max = prof.size-1 if xmax is None or max > xmax: xmax = max to_plot.append(prof) yspace = 0.1*ymax ppgplot.pgswin(0, xmax, ymin-yspace, ymax+yspace) for prof in to_plot: ppgplot.pgline(np.arange(0,prof.size), prof) ppgplot.pgbox("BNTS", 0, 0, "BC", 0, 0) # Set up summed profile plot ppgplot.pgsvp(0.1, 0.9, 0.8, 0.9) ppgplot.pglab("", "Summed profile", "Pulses from %s" % timeseries.datfn) summed_prof = summed_prof - summed_prof.mean() ppgplot.pgswin(0, xmax, summed_prof.min(), summed_prof.max()) ppgplot.pgline(np.arange(0, summed_prof.size), summed_prof) ppgplot.pgbox("C", 0, 0, "BC", 0, 0) ppgplot.pgclos()
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2=rangex otherxaxis=0 else: otherxaxis=1 if rangey2 is None: rangey2=rangey otheryaxis=0 else: otheryaxis=1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # My little add-on to switch the background to white if device == '/XWIN': reset_colors() if device == '/AQT': ppgplot.pgsci(0) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1,1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks=='in': env = "CMST" else: env = "CMSTI" if logx2: lxenv='L' else: lxenv='' if logy2: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox(env+lxenv, 0.0, 0, env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env+lyenv, 0.0, 0) else: ppgplot.pgbox(env+lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks=='in': env = "ST" else: env = "STI" if logx: lxenv='L' else: lxenv='' if logy: lyenv='L' else: lyenv='' if otherxaxis and otheryaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BN"+env+lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) else: ppgplot.pgbox("BCN"+env+lxenv, 0.0, 0, "BCN"+env+lyenv, 0.0, 0) # My little add-on to switch the background to white if device == '/AQT' or device == '/XWIN': reset_colors() # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id==1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin, path, results_path): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) # Parse identifications idents = [satid(line) for line in lines] # Identify unknowns for ident0 in idents: if ident0.catalog == "unidentified": for ident1 in idents: if ident1.catalog == "unidentified": continue # Find matches p1 = inside_selection(ident1, ident0.t0, ident0.x0, ident0.y0) p2 = inside_selection(ident1, ident0.t1, ident0.x1, ident0.y1) # Match found if p1 and p2: # Copy info ident0.norad = ident1.norad ident0.catalog = ident1.catalog ident0.state = ident1.state ident1.state = "remove" break # Loop over identifications for ident in idents: # Skip superseded unknowns if ident.state == "remove": continue # Skip slow moving objects drdt = np.sqrt(ident.dxdt**2 + ident.dydt**2) if drdt < drdtmin: continue # Extract significant pixels along a track x, y, t, sig = ff.significant_pixels_along_track( trksig, ident.x0, ident.y0, ident.dxdt, ident.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot plot_header(fname.replace(".fits", "_%05d.png/png" % ident.norad), ff, iod_line) ppg.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.zmaxmax, ff.zmaxmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgmove(xmin, ymin) ppg.pgdraw(xmax, ymax) ppg.pgsch(0.65) ppg.pgtext(np.array([x0]), np.array([y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line) elif ident.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = ident.x0 + ident.dxdt * t, ident.y0 + ident.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: store_not_seen(ident, fname, results_path) continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = ident.x0 + ident.dxdt * tmid ymid = ident.y0 + ident.dydt * tmid ztrk = ndimage.gaussian_filter( ff.track(ident.dxdt, ident.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: store_not_seen(ident, fname, results_path) continue # Skip if point is outside selection area if inside_selection(ident, tmid, x0, y0) is False: store_not_seen(ident, fname, results_path) continue # Format IOD line cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot pngfile = fname.replace(".fits", "_%05d.png" % ident.norad) plot_header(pngfile + "/png", ff, iod_line) ppg.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) plot_selection(ident, xmid, ymid) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([ident.x0]), np.array([ident.y0]), 17) ppg.pgmove(ident.x0, ident.y0) ppg.pgdraw(ident.x1, ident.y1) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgsch(0.65) ppg.pgtext(np.array([ident.x0]), np.array([ident.y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line)
def main(): parser = OptionParser(usage) parser.add_option( "-x", "--xwin", action="store_true", dest="xwin", default=False, help="Don't make a postscript plot, just use an X-window") parser.add_option("-p", "--noplot", action="store_false", dest="makeplot", default=True, help="Look for pulses but do not generate a plot") parser.add_option( "-m", "--maxwidth", type="float", dest="maxwidth", default=0.0, help="Set the max downsampling in sec (see below for default)") parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0, help="Set a different threshold SNR (default=5.0)") parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0, help="Only plot events occuring after this time (s)") parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9, help="Only plot events occuring before this time (s)") parser.add_option("-g", "--glob", type="string", dest="globexp", default=None, help="Process the files from this glob expression") parser.add_option("-f", "--fast", action="store_true", dest="fast", default=False, help="Use a faster method of de-trending (2x speedup)") (opts, args) = parser.parse_args() if len(args) == 0: if opts.globexp == None: print full_usage sys.exit(0) else: args = [] for globexp in opts.globexp.split(): args += glob.glob(globexp) useffts = True dosearch = True if opts.xwin: pgplot_device = "/XWIN" else: pgplot_device = "" fftlen = 8192 # Should be a power-of-two for best speed chunklen = 8000 # Must be at least max_downfact less than fftlen detrendlen = 1000 # length of a linear piecewise chunk of data for detrending blocks_per_chunk = chunklen / detrendlen overlap = (fftlen - chunklen) / 2 worklen = chunklen + 2 * overlap # currently it is fftlen... max_downfact = 30 default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150] if args[0].endswith(".singlepulse"): filenmbase = args[0][:args[0].rfind(".singlepulse")] dosearch = False elif args[0].endswith(".dat"): filenmbase = args[0][:args[0].rfind(".dat")] else: filenmbase = args[0] # Don't do a search, just read results and plot if not dosearch: info, DMs, candlist, num_v_DMstr = \ read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end) orig_N, orig_dt = int(info.N), info.dt obstime = orig_N * orig_dt else: DMs = [] candlist = [] num_v_DMstr = {} # Loop over the input files for filenm in args: if filenm.endswith(".dat"): filenmbase = filenm[:filenm.rfind(".dat")] else: filenmbase = filenm info = infodata.infodata(filenmbase + ".inf") DMstr = "%.2f" % info.DM DMs.append(info.DM) N, dt = int(info.N), info.dt obstime = N * dt # Choose the maximum width to search based on time instead # of bins. This helps prevent increased S/N when the downsampling # changes as the DM gets larger. if opts.maxwidth > 0.0: downfacts = [ x for x in default_downfacts if x * dt <= opts.maxwidth ] else: downfacts = [x for x in default_downfacts if x <= max_downfact] if len(downfacts) == 0: downfacts = [default_downfacts[0]] if (filenm == args[0]): orig_N = N orig_dt = dt if useffts: fftd_kerns = make_fftd_kerns(downfacts, fftlen) if info.breaks: offregions = zip([x[1] for x in info.onoff[:-1]], [x[0] for x in info.onoff[1:]]) outfile = open(filenmbase + '.singlepulse', mode='w') # Compute the file length in detrendlens roundN = N / detrendlen * detrendlen numchunks = roundN / chunklen # Read in the file print 'Reading "%s"...' % filenm timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN) # Split the timeseries into chunks for detrending numblocks = roundN / detrendlen timeseries.shape = (numblocks, detrendlen) stds = Num.zeros(numblocks, dtype=Num.float64) # de-trend the data one chunk at a time print ' De-trending the data and computing statistics...' for ii, chunk in enumerate(timeseries): if opts.fast: # use median removal instead of detrending (2x speedup) tmpchunk = chunk.copy() tmpchunk.sort() med = tmpchunk[detrendlen / 2] chunk -= med tmpchunk -= med else: # The detrend calls are the most expensive in the program timeseries[ii] = scipy.signal.detrend(chunk, type='linear') tmpchunk = timeseries[ii].copy() tmpchunk.sort() # The following gets rid of (hopefully) most of the # outlying values (i.e. power dropouts and single pulses) # If you throw out 5% (2.5% at bottom and 2.5% at top) # of random gaussian deviates, the measured stdev is ~0.871 # of the true stdev. Thus the 1.0/0.871=1.148 correction below. # The following is roughly .std() since we already removed the median stds[ii] = Num.sqrt( (tmpchunk[detrendlen / 40:-detrendlen / 40]**2.0).sum() / (0.95 * detrendlen)) stds *= 1.148 # sort the standard deviations and separate those with # very low or very high values sort_stds = stds.copy() sort_stds.sort() # identify the differences with the larges values (this # will split off the chunks with very low and very high stds locut = (sort_stds[1:numblocks / 2 + 1] - sort_stds[:numblocks / 2]).argmax() + 1 hicut = (sort_stds[numblocks / 2 + 1:] - sort_stds[numblocks / 2:-1]).argmax() + numblocks / 2 - 2 std_stds = scipy.std(sort_stds[locut:hicut]) median_stds = sort_stds[(locut + hicut) / 2] lo_std = median_stds - 4.0 * std_stds hi_std = median_stds + 4.0 * std_stds # Determine a list of "bad" chunks. We will not search these. bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0] print " pseudo-median block standard deviation = %.2f" % ( median_stds) print " identified %d bad blocks out of %d (i.e. %.2f%%)" % \ (len(bad_blocks), len(stds), 100.0*float(len(bad_blocks))/float(len(stds))) stds[bad_blocks] = median_stds print " Now searching..." # Now normalize all of the data and reshape it to 1-D timeseries /= stds[:, Num.newaxis] timeseries.shape = (roundN, ) # And set the data in the bad blocks to zeros # Even though we don't search these parts, it is important # because of the overlaps for the convolutions for bad_block in bad_blocks: loind, hiind = bad_block * detrendlen, (bad_block + 1) * detrendlen timeseries[loind:hiind] = 0.0 # Convert to a set for faster lookups below bad_blocks = set(bad_blocks) # Step through the data dm_candlist = [] for chunknum in range(numchunks): loind = chunknum * chunklen - overlap hiind = (chunknum + 1) * chunklen + overlap # Take care of beginning and end of file overlap issues if (chunknum == 0): # Beginning of file chunk = Num.zeros(worklen, dtype=Num.float32) chunk[overlap:] = timeseries[loind + overlap:hiind] elif (chunknum == numchunks - 1): # end of the timeseries chunk = Num.zeros(worklen, dtype=Num.float32) chunk[:-overlap] = timeseries[loind:hiind - overlap] else: chunk = timeseries[loind:hiind] # Make a set with the current block numbers lowblock = blocks_per_chunk * chunknum currentblocks = set(Num.arange(blocks_per_chunk) + lowblock) localgoodblocks = Num.asarray( list(currentblocks - bad_blocks)) - lowblock # Search this chunk if it is not all bad if len(localgoodblocks): # This is the good part of the data (end effects removed) goodchunk = chunk[overlap:-overlap] # need to pass blocks/chunklen, localgoodblocks # dm_candlist, dt, opts.threshold to cython routine # Search non-downsampled data first # NOTE: these nonzero() calls are some of the most # expensive calls in the program. Best bet would # probably be to simply iterate over the goodchunk # in C and append to the candlist there. hibins = Num.flatnonzero(goodchunk > opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins / detrendlen # Add the candidates (which are sorted by bin) for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt dm_candlist.append( candidate(info.DM, val, time, bin, 1)) # Prepare our data for the convolution if useffts: fftd_chunk = rfft(chunk, -1) # Now do the downsampling... for ii, downfact in enumerate(downfacts): if useffts: # Note: FFT convolution is faster for _all_ downfacts, even 2 goodchunk = fft_convolve(fftd_chunk, fftd_kerns[ii], overlap, -overlap) else: # The normalization of this kernel keeps the post-smoothing RMS = 1 kernel = Num.ones(downfact, dtype=Num.float32) / \ Num.sqrt(downfact) smoothed_chunk = scipy.signal.convolve( chunk, kernel, 1) goodchunk = smoothed_chunk[overlap:-overlap] #hibins = Num.nonzero(goodchunk>opts.threshold)[0] hibins = Num.flatnonzero(goodchunk > opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins / detrendlen hibins = hibins.tolist() hivals = hivals.tolist() # Now walk through the new candidates and remove those # that are not the highest but are within downfact/2 # bins of a higher signal pulse hibins, hivals = prune_related1( hibins, hivals, downfact) # Insert the new candidates into the candlist, but # keep it sorted... for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt bisect.insort( dm_candlist, candidate(info.DM, val, time, bin, downfact)) # Now walk through the dm_candlist and remove the ones that # are within the downsample proximity of a higher # signal-to-noise pulse dm_candlist = prune_related2(dm_candlist, downfacts) print " Found %d pulse candidates" % len(dm_candlist) # Get rid of those near padding regions if info.breaks: prune_border_cases(dm_candlist, offregions) # Write the pulses to an ASCII output file if len(dm_candlist): #dm_candlist.sort(cmp_sigma) outfile.write( "# DM Sigma Time (s) Sample Downfact\n") for cand in dm_candlist: outfile.write(str(cand)) outfile.close() # Add these candidates to the overall candidate list for cand in dm_candlist: candlist.append(cand) num_v_DMstr[DMstr] = len(dm_candlist) if (opts.makeplot): # Step through the candidates to make a SNR list DMs.sort() snrs = [] for cand in candlist: snrs.append(cand.sigma) if snrs: maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3 else: maxsnr = int(opts.threshold) + 3 # Generate the SNR histogram snrs = Num.asarray(snrs) (num_v_snr, lo_snr, d_snr, num_out_of_range) = \ scipy.stats.histogram(snrs, int(maxsnr-opts.threshold+1), [opts.threshold, maxsnr]) snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \ + lo_snr + 0.5*d_snr num_v_snr = num_v_snr.astype(Num.float32) num_v_snr[num_v_snr == 0.0] = 0.001 # Generate the DM histogram num_v_DM = Num.zeros(len(DMs)) for ii, DM in enumerate(DMs): num_v_DM[ii] = num_v_DMstr["%.2f" % DM] DMs = Num.asarray(DMs) # open the plot device short_filenmbase = filenmbase[:filenmbase.find("_DM")] if opts.T_end > obstime: opts.T_end = obstime if pgplot_device: ppgplot.pgopen(pgplot_device) else: if (opts.T_start > 0.0 or opts.T_end < obstime): ppgplot.pgopen(short_filenmbase + '_%.0f-%.0fs_singlepulse.ps/VPS' % (opts.T_start, opts.T_end)) else: ppgplot.pgopen(short_filenmbase + '_singlepulse.ps/VPS') ppgplot.pgpap(7.5, 1.0) # Width in inches, aspect # plot the SNR histogram ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87) ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5), Num.log10(2 * max(num_v_snr))) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1) # plot the DM histogram ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87) # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0 ppgplot.pgswin( min(DMs) - 0.5, max(DMs) + 0.5, 0.0, 1.1 * max(num_v_DM + [1])) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(DMs, num_v_DM, 1) # plot the SNR vs DM plot ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87) ppgplot.pgswin(min(DMs) - 0.5, max(DMs) + 0.5, opts.threshold, maxsnr) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgsch(1.0) cand_ts = Num.zeros(len(candlist), dtype=Num.float32) cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32) cand_DMs = Num.zeros(len(candlist), dtype=Num.float32) for ii, cand in enumerate(candlist): cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \ cand.time, cand.sigma, cand.DM ppgplot.pgpt(cand_DMs, cand_SNRs, 20) # plot the DM vs Time plot ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52) ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs) - 0.5, max(DMs) + 0.5) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") # Circles are symbols 20-26 in increasing order snr_range = 12.0 cand_symbols = (cand_SNRs - opts.threshold) / snr_range * 6.0 + 20.5 cand_symbols = cand_symbols.astype(Num.int32) cand_symbols[cand_symbols > 26] = 26 for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols == ii)[0] ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii) # Now fill the infomation area ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97) ppgplot.pgsch(1.0) ppgplot.pgmtxt('T', 0.5, 0.0, 0.0, "Single pulse results for '%s'" % short_filenmbase) ppgplot.pgsch(0.8) # first row ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\ info.object) ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):') ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA) ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f' % orig_N) # second row ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\ info.telescope) ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):') ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC) ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\ (orig_dt*1e6)) # third row if info.instrument.find("pigot") >= 0: instrument = "Spigot" else: instrument = info.instrument ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s' % instrument) if (info.bary): ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f' % info.epoch) else: ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f' % info.epoch) ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\ ((info.numchan/2-0.5)*info.chan_width+info.lofreq)) ppgplot.pgiden() ppgplot.pgend()
""" Set up the PGPLOT windows """ xyPositionPlot = {} xyPositionPlot['pgplotHandle'] = ppgplot.pgopen('/xs') xyPositionPlot['yLimit'] = 1.0 xyPositionPlot['numXYPanels'] = len(referenceApertures.sources) ppgplot.pgpap(6.18, 1.618) ppgplot.pgsubp(1, xyPositionPlot['numXYPanels']) ppgplot.pgsci(5) for panel in range(xyPositionPlot['numXYPanels']): currentSize = ppgplot.pgqch() ppgplot.pgsch(1) yLimit = xyPositionPlot['yLimit'] ppgplot.pgenv(startFrame, startFrame + frameRange, -yLimit, yLimit, 0, -2) ppgplot.pgbox('A', 0.0, 0, 'BCG', 0.0, 0) ppgplot.pglab("", "%d"%panel, "") ppgplot.pgsch(currentSize) ppgplot.pgask(False) ppgplot.pgsci(1) if (arg.preview): bitmapView = {} bitmapView['pgplotHandle'] = ppgplot.pgopen('/xs') ppgplot.pgpap(8, 1) ppgplot.pgenv(0.,fullFramexsize,0.,fullFrameysize, 1, 0) pgPlotTransform = [0, 1, 0, 0, 0, 1] ppgplot.pgsfs(2)
print ppgplot.pgqvp(0) (x1, x2, y1, y2) = ppgplot.pgqvp(0) print ppgplot.pgqwin(0) xlower = (x1 + x2) / 2 + 0.05 xupper = x2 - 0.05 yupper = (y1 + y2) / 2 ylower = 0.22 ppgplot.pgsvp(xlower, xupper, ylower, yupper) ppgplot.pgswin(startPhase, endPhase, 0, numpy.max(subFlux)) print ppgplot.pgqvp(0) print ppgplot.pgqwin(0) # ppgplot.pgsubp(4, 3) # ppgplot.pgpanl(2, 2) # ppgplot.pgenv(startPhase, endPhase, 0, numpy.max(flux), 0, -1) # ppgplot.pglab("Phase", "PTF flux", "%s"%(arg.name)) ppgplot.pgbox("BCN", 0, 0, "BC", 0, 0) ppgplot.pgpt(subPhases, subFlux) ppgplot.pgerrb(2, subPhases, subFlux, subFluxErr, 0) ppgplot.pgerrb(4, subPhases, subFlux, subFluxErr, 0) ppgplot.pgsls(2) ppgplot.pgline(subModelPhases, subModel) ppgplot.pgsls(4) ppgplot.pgline([1, 1], [0, numpy.max(subFlux)]) ppgplot.pgclos() sys.exit()
def plot(self, vlo=2., vhi=98., nc=-1, method='p', mpl=False, cmap=CMDEF, \ close=True, x1=None, x2=None, y1=None, y2=None, sepmin=1.): """ Plots an MCCD using pgplot or matplotlib if preferred. :Parameters: vlo : float number specifying the lowest level to plot (default as a percentile) vhi : float number specifying the lowest level to plot (default as a percentile) nc : int CCD number (starting from 0, -1 for all) method : string how vlo and vhi are to be interpreted. 'p' = percentile, 'a' = automatic (min to max, vlo and vhi are irrelevant), 'd' = direct, i.e. just take the values given. mpl : bool True to prefer matplotlib over pgplot (which may not even be an option) cmap : matplotlib.cm.binary colour map if using matplotlib close : bool close (pgplot) or 'show' (matplotlib) the plot at the end (or not, to allow you to plot something else, use a cursor etc). In the case of pgplot, this also implies opening the plot at the start, i.e. a self-contained quick plot. x1 : float left-hand plot limit. Defaults to 0.5 x2 : float right-hand plot limit. Defaults to nxmax+0.5 y1 : float lower plot limit. Defaults to 0.5 y2 : float upper plot limit. Defaults to nymax+0.5 sepmin : float minimum separation between intensity limits (> 0 to stop PGPLOT complaining) :Returns: range(s) : tuple or list the plot range(s) used either as a single 2-element tuple, or a list of them, one per CCD plotted. """ if nc == -1: nc1 = 0 nc2 = len(self) else: nc1 = nc nc2 = nc + 1 if not mpl: if close: pg.pgopen('/xs') if nc2 - nc1 > 1: pg.pgsubp(nc2 - nc1, 1) prange = [] for nc, ccd in enumerate(self._data[nc1:nc2]): # Determine intensity range to display if method == 'p': vmin, vmax = ccd.centile((vlo, vhi)) elif method == 'a': vmin, vmax = ccd.min(), ccd.max() elif method == 'd': vmin, vmax = vlo, vhi else: raise UltracamError( 'MCCD.plot: method must be one of p, a or d.') if vmin == vmax: vmin -= sepmin / 2. vmax += sepmin / 2. prange.append((vmin, vmax)) # start nxmax, nymax = ccd.nxmax, ccd.nymax x1 = 0.5 if x1 is None else x1 x2 = nxmax + 0.5 if x2 is None else x2 y1 = 0.5 if y1 is None else y1 y2 = nymax + 0.5 if y2 is None else y2 if mpl: if nc2 - nc1 > 1: plt.subplot(1, nc2 - nc1, nc + 1) plt.axis('equal') else: if nc2 - nc1 > 1: pg.pgpanl(nc - nc1 + 1, 1) pg.pgwnad(x1, x2, y1, y2) # plot CCD ccd.plot(vmin, vmax, mpl, cmap) # per-frame finishing-off if mpl: plt.xlim(x1, x2) plt.ylim(y1, y2) else: pg.pgbox('bcnst', 0, 0, 'bcnst', 0, 0) pg.pglab('X', 'Y', '') if close: if mpl: plt.show() else: pg.pgclos() # return intensity range(s) used if len(prange) == 1: return prange[0] else: return tuple(prange)
ppgplot.pgscr(0, 0.0, 0.0, 0.4) elif m.sunalt > -6.0: ppgplot.pgscr(0, 0.0, 0.0, 0.3) elif m.sunalt > -12.0: ppgplot.pgscr(0, 0.0, 0.0, 0.2) elif m.sunalt > -18.0: ppgplot.pgscr(0, 0.0, 0.0, 0.1) else: ppgplot.pgscr(0, 0.0, 0.0, 0.0) ppgplot.pgsci(0) # Plot box ppgplot.pgrect(-1.5 * m.w, 1.5 * m.w, -m.w, m.w) ppgplot.pgsci(1) ppgplot.pgsch(1.0) ppgplot.pgbox("BC", 0., 0, "BC", 0., 0) ppgplot.pgpt1(0., 0., 2) # Plot field-of-view ppgplot.pgsfs(2) ppgplot.pgrect(-m.fw, m.fw, -m.fh, m.fh) ppgplot.pgsfs(1) # Top left string ppgplot.pgsch(0.8) text = "%s UTC; %s (%04d) [%+.4f\\u\\(2218)\\d, %+.4f\\u\\(2218)\\d, %.0fm]" % ( m.t.isot, m.observer, m.site, m.lat, m.lon, m.elev) ppgplot.pgmtxt("T", 0.6, 0., 0., text) # Bottom string sra = m.ra.to_string(sep=":",
def plot_rating_sheet(rating): """ Plot a fact sheet on the ratings in the database corresponding to 'rating'. 'rating' is a dictionary of information from the MySQL database (as returned by 'get_all_rating_types()'. """ plot_utils.beginplot("rating_report%s.ps" % currdatetime.strftime('%y%m%d'), vertical=True) ch0 = ppgplot.pgqch() ppgplot.pgsch(0.5) ch = ppgplot.pgqch() ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 1 of 2" % (rating["name"], currdatetime.strftime('%c'))) ppgplot.pgsch(ch) # Plot Histograms all_ratings = get_ratings(rating["rating_id"]) range = xmin,xmax = np.min(all_ratings), np.max(all_ratings) ppgplot.pgsci(1) ppgplot.pgslw(1) #===== Total/Classified/Unclassified # Get data ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) (tot_counts, tot_left_edges)=np.histogram(all_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(tot_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, tot_counts) (clsfd_counts, clsfd_left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3,4,5,6,7)), bins=NUMBINS, range=range) ppgplot.pgsci(3) # plot classified in green ppgplot.pgbin(tot_left_edges, clsfd_counts) unclsfd_counts = tot_counts-clsfd_counts ppgplot.pgsci(2) # plot unclassified in red ppgplot.pgbin(tot_left_edges, unclsfd_counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Counts","") #===== Class 1/2/3 ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) (counts, left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3)), bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Class 1/2/3","") #===== RFI ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) rfi_ratings = get_ratings(rating["rating_id"], human_classification=(4,)) (counts, left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI","") #===== Noise ppgplot.pgsvp(0.1, 0.9, 0.3, 0.45) noise_ratings = get_ratings(rating["rating_id"], human_classification=(5,)) (counts, left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Noise","") #===== Known/Harmonic ppgplot.pgsvp(0.1, 0.9, 0.15, 0.3) known_ratings = get_ratings(rating["rating_id"], human_classification=(6,7)) (counts, left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known/Harmonic","") #===== Second page for differential histograms plot_utils.nextpage(vertical=True) ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 2 of 2" % (rating["name"], currdatetime.strftime('%c'))) #===== RFI - Known ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) if rfi_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - known_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") #===== RFI - Noise ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) if noise_ratings.size==0 or rfi_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") #===== Known - Noise ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) if noise_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) # Y-axis label is taken care of outside of if/else (below) ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = known_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgswin(xmin,xmax,0,1) ppgplot.pgsch(0.5) ppgplot.pgbox("NTS",0,5,"",0,0) ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known - Noise","") ppgplot.pgsch(ch0) # reset character height
def main(options): global keepPlotting keepPlotting = True debug = options.debug inputMS = options.inms if inputMS == "": print "Error: You must specify a MS name." print ' Use "uvplot.py -h" to get help.' return if inputMS.endswith("/"): inputMS = inputMS[:-1] inputMSbasename = inputMS.split("/")[-1] if inputMSbasename == "": # The user has not specified the full path of the MS inputMSbasename = inputMS device = options.device if device == "?": ppgplot.pgldev() return xaxis = options.xaxis yaxis = options.yaxis column = options.column nx, ny = options.nxy.split(",") axlimits = options.axlimits.split(",") if len(axlimits) == 4: xmin, xmax, ymin, ymax = axlimits else: print "Error: You must specify four axis limits" return showFlags = options.flag flagCol = options.colflag showAutocorr = options.autocorr showStats = options.statistics timeslots = options.timeslots.split(",") if len(timeslots) != 2: print "Error: Timeslots format is start,end" return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) antToPlotSpl = options.antennas.split(",") antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split("..") if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1): antToPlot.append(j) else: print "Error: Could not understand antenna list." return polarizations = options.polar.split(",") for i in range(len(polarizations)): polarizations[i] = int(polarizations[i]) convertStokes = options.stokes operation = options.operation if operation != "": operation = int(operation) if convertStokes: print "Error: Stokes conversion is not compatible with special operations" return channels = options.channels.split(",") if len(channels) != 2: print "Error: Channels format is start,end" return for i in range(len(channels)): channels[i] = int(channels[i]) if channels[1] == -1: channels[1] = None # last element even if there is only one else: channels[1] += 1 queryMode = options.query doUnwrap = options.wrap if not queryMode: # open the graphics device, use the right number of panels ppgplot.pgbeg(device, int(nx), int(ny)) # set the font size ppgplot.pgsch(1.5) ppgplot.pgvstd() # open the main table and print some info about the MS t = pt.table(inputMS, readonly=True, ack=False) firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows() - 1) intTime = t.getcell("INTERVAL", 0) print "Integration time:\t%f sec" % (intTime) nTimeslots = (lastTime - firstTime) / intTime if timeslots[1] == -1: timeslots[1] = nTimeslots else: timeslots[1] += 1 print "Number of timeslots:\t%d" % (nTimeslots) # open the antenna and spectral window subtables tant = pt.table(t.getkeyword("ANTENNA"), readonly=True, ack=False) tsp = pt.table(t.getkeyword("SPECTRAL_WINDOW"), readonly=True, ack=False) numChannels = len(tsp.getcell("CHAN_FREQ", 0)) print "Number of channels:\t%d" % (numChannels) print "Reference frequency:\t%5.2f MHz" % (tsp.getcell("REF_FREQUENCY", 0) / 1.0e6) # Station names antList = tant.getcol("NAME") if len(antToPlot) == 1 and antToPlot[0] == -1: antToPlot = range(len(antList)) print "Station list (only starred stations will be plotted):" for i in range(len(antList)): star = " " if i in antToPlot: star = "*" print "%s %2d\t%s" % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query( "TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s" % (firstTime + timeslots[0] * intTime, firstTime + timeslots[1] * intTime, str(antToPlot), str(antToPlot)) ) # values to use for each polarization plotColors = [1, 2, 3, 4] labXPositions = [0.35, 0.45, 0.55, 0.65] labYPositions = [1.0, 1.0, 1.0, 1.0] if convertStokes: polLabels = ["I", "Q", "U", "V"] else: polLabels = ["XX", "XY", "YX", "YY"] # define nicely written axis labels axisLabels = { "time": "Time", "chan": "Channel", "freq": "Frequency [MHz]", "amp": "Visibility amplitude", "real": "Real part of visibility", "imag": "Imaginary part of visibility", "phase": "Visibility phase [radians]", } # Now we loop through the baselines ppgplot.pgpage() for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]): if not keepPlotting: return ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: if not showAutocorr: continue # Get the values to plot, strategy depends on axis type if xaxis == "time": xaxisvals = getXAxisVals(tpart, xaxis, channels) yaxisvals = getYAxisVals( tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes ) else: xaxisvals = getXAxisVals(tsp, xaxis, channels) yaxisvals = getYAxisVals( tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1 ) if xaxisvals == None: # This baseline must be empty, go to next one print "No good data on baseline %s - %s" % (antList[ant1], antList[ant2]) continue if debug: print xaxisvals.shape print yaxisvals.shape for r in range(len(xaxisvals)): print "%s" % yaxisvals[r] if len(xaxisvals) != len(yaxisvals): # something is wrong print "Error: X and Y axis types incompatible" return # Plot the data, each polarization in a different color ppgplot.pgsci(1) if xmin == "": minx = xaxisvals.min() else: minx = float(xmin) if xmax == "": maxx = xaxisvals.max() else: maxx = float(xmax) if ymin == "": miny = yaxisvals.min() if numpy.ma.getmaskarray(yaxisvals.min()): print "All data flagged on baseline %s - %s" % (antList[ant1], antList[ant2]) continue else: miny = float(ymin) if ymax == "": maxy = yaxisvals.max() else: maxy = float(ymax) if minx == maxx: minx -= 1.0 maxx += 1.0 else: diffx = maxx - minx minx -= 0.02 * diffx maxx += 0.02 * diffx if miny == maxy: miny -= 1.0 maxy += 1.0 else: diffy = maxy - miny miny -= 0.02 * diffy maxy += 0.02 * diffy # ppgplot.pgpage() ppgplot.pgswin(minx, maxx, miny, maxy) if xaxis == "time": ppgplot.pgtbox("ZHOBCNST", 0.0, 0, "BCNST", 0.0, 0) else: ppgplot.pgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0) # ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2])) # ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename) ppgplot.pglab( axisLabels[xaxis], axisLabels[yaxis], inputMSbasename + "(" + getDataDescription(column) + "): %s - %s" % (antList[ant1], antList[ant2]), ) if operation != 0: # some operations is defined if operation == 1: label = "XX-YY" elif operation == 2: label = "XY.YX*" else: print "Special operation not defined" return ppgplot.pgsci(plotColors[0]) tmpvals = yaxisvals print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len( tmpvals[~tmpvals.mask] ), "points of " + label ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1]) else: for j in polarizations: ppgplot.pgsci(plotColors[j]) tmpvals = yaxisvals[:, j] if j == polarizations[0]: print "Baseline", antList[ant1], "-", antList[ant2], ": Plotting", len( tmpvals[~tmpvals.mask] ), "points per polarization" ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j]) ppgplot.pgpage() # Close the PGPLOT device ppgplot.pgclos()
ppgplot.pgopen(device) ppgplot.pgpap(0.0, 1.0) ppgplot.pgpage() # Give z and w values and power change ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin+imfract, 1.0-margin/2) ppgplot.pgswin(0.0, 1.0, 0.0, 1.0) ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp) ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp) ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z) ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w) # freq cut ppgplot.pgsvp(margin, margin+imfract, margin+imfract, 1.0-margin/2) ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1) ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0) ppgplot.pgline(rs, freqcut) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power"); #fdot cut ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin, margin+imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0) ppgplot.pgline(fdotcut, zs) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, "Relative Power"); # f-fdot image ppgplot.pgsvp(margin, margin+imfract, margin, margin+imfract) ppgplot.pgswin(min(rs), max(rs), min(zs), max(zs)) ppgplot.pgmtxt("B", 2.4, 0.5, 0.5, labx); ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, laby);
def prepplot(rangex, rangey, title=None, labx=None, laby=None, \ rangex2=None, rangey2=None, labx2=None, laby2=None, \ logx=0, logy=0, logx2=0, logy2=0, font=ppgplot_font_, \ fontsize=ppgplot_font_size_, id=0, aspect=1, ticks='in', \ panels=[1,1], device=ppgplot_device_): """ prepplot(rangex, rangey, ...) Open a PGPLOT device for plotting. 'rangex' and 'rangey' are sequence objects giving min and max values for each axis. The optional entries are: title: graph title (default = None) labx: label for the x-axis (default = None) laby: label for the y-axis (default = None) rangex2: ranges for 2nd x-axis (default = None) rangey2: ranges for 2nd y-axis (default = None) labx2: label for the 2nd x-axis (default = None) laby2: label for the 2nd y-axis (default = None) logx: make the 1st x-axis log (default = 0 (no)) logy: make the 1st y-axis log (default = 0 (no)) logx2: make the 2nd x-axis log (default = 0 (no)) logy2: make the 2nd y-axis log (default = 0 (no)) font: PGPLOT font to use (default = 1 (normal)) fontsize: PGPLOT font size to use (default = 1.0 (normal)) id: Show ID line on plot (default = 0 (no)) aspect: Aspect ratio (default = 1 (square)) ticks: Ticks point in or out (default = 'in') panels: Number of subpanels [r,c] (default = [1,1]) device: PGPLOT device to use (default = '/XWIN') Note: Many default values are defined in global variables with names like ppgplot_font_ or ppgplot_device_. """ global ppgplot_dev_open_, ppgplot_dev_prep_ # Check if we will use second X or Y axes # Note: if using a 2nd X axis, the range should correspond # to the minimum and maximum values of the 1st X axis. If # using a 2nd Y axis, the range should correspond to the # scalerange() values of the 1st Y axis. if rangex2 is None: rangex2 = rangex otherxaxis = 0 else: otherxaxis = 1 if rangey2 is None: rangey2 = rangey otheryaxis = 0 else: otheryaxis = 1 # Open the plot device if (not ppgplot_dev_open_): ppgplot.pgopen(device) # Let the routines know that we already have a device open ppgplot_dev_open_ = 1 # Set the aspect ratio ppgplot.pgpap(0.0, aspect) if (panels != [1, 1]): # Set the number of panels ppgplot.pgsubp(panels[0], panels[1]) ppgplot.pgpage() # Choose the font ppgplot.pgscf(font) # Choose the font size ppgplot.pgsch(fontsize) # Choose the font size ppgplot.pgslw(ppgplot_linewidth_) # Plot the 2nd axis if needed first if otherxaxis or otheryaxis: ppgplot.pgvstd() ppgplot.pgswin(rangex2[0], rangex2[1], rangey2[0], rangey2[1]) # Decide how the axes will be drawn if ticks == 'in': env = "CMST" else: env = "CMSTI" if logx2: lxenv = 'L' else: lxenv = '' if logy2: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox(env + lxenv, 0.0, 0, env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("", 0.0, 0, env + lyenv, 0.0, 0) else: ppgplot.pgbox(env + lxenv, 0.0, 0, "", 0.0, 0) # Now setup the primary axis ppgplot.pgvstd() ppgplot.pgswin(rangex[0], rangex[1], rangey[0], rangey[1]) # Decide how the axes will be drawn if ticks == 'in': env = "ST" else: env = "STI" if logx: lxenv = 'L' else: lxenv = '' if logy: lyenv = 'L' else: lyenv = '' if otherxaxis and otheryaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otheryaxis: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BN" + env + lyenv, 0.0, 0) elif otherxaxis: ppgplot.pgbox("BN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) else: ppgplot.pgbox("BCN" + env + lxenv, 0.0, 0, "BCN" + env + lyenv, 0.0, 0) # Add labels if not title is None: ppgplot.pgmtxt("T", 3.2, 0.5, 0.5, title) ppgplot.pgmtxt("B", 3.0, 0.5, 0.5, labx) ppgplot.pgmtxt("L", 2.6, 0.5, 0.5, laby) if otherxaxis: ppgplot.pgmtxt("T", 2.0, 0.5, 0.5, labx2) if otheryaxis: ppgplot.pgmtxt("R", 3.0, 0.5, 0.5, laby2) # Add ID line if required if (id == 1): ppgplot.pgiden() # Let the routines know that we have already prepped the device ppgplot_dev_prep_ = 1
def plot(self, vlo=2., vhi=98., nc=-1, method='p', mpl=False, cmap=CMDEF, \ close=True, x1=None, x2=None, y1=None, y2=None, sepmin=1.): """ Plots an MCCD using pgplot or matplotlib if preferred. :Parameters: vlo : float number specifying the lowest level to plot (default as a percentile) vhi : float number specifying the lowest level to plot (default as a percentile) nc : int CCD number (starting from 0, -1 for all) method : string how vlo and vhi are to be interpreted. 'p' = percentile, 'a' = automatic (min to max, vlo and vhi are irrelevant), 'd' = direct, i.e. just take the values given. mpl : bool True to prefer matplotlib over pgplot (which may not even be an option) cmap : matplotlib.cm.binary colour map if using matplotlib close : bool close (pgplot) or 'show' (matplotlib) the plot at the end (or not, to allow you to plot something else, use a cursor etc). In the case of pgplot, this also implies opening the plot at the start, i.e. a self-contained quick plot. x1 : float left-hand plot limit. Defaults to 0.5 x2 : float right-hand plot limit. Defaults to nxmax+0.5 y1 : float lower plot limit. Defaults to 0.5 y2 : float upper plot limit. Defaults to nymax+0.5 sepmin : float minimum separation between intensity limits (> 0 to stop PGPLOT complaining) :Returns: range(s) : tuple or list the plot range(s) used either as a single 2-element tuple, or a list of them, one per CCD plotted. """ if nc == -1: nc1 = 0 nc2 = len(self) else: nc1 = nc nc2 = nc+1 if not mpl: if close: pg.pgopen('/xs') if nc2-nc1 > 1: pg.pgsubp(nc2-nc1,1) prange = [] for nc, ccd in enumerate(self._data[nc1:nc2]): # Determine intensity range to display if method == 'p': vmin, vmax = ccd.centile((vlo,vhi)) elif method == 'a': vmin, vmax = ccd.min(), ccd.max() elif method == 'd': vmin, vmax = vlo, vhi else: raise UltracamError('MCCD.plot: method must be one of p, a or d.') if vmin == vmax: vmin -= sepmin/2. vmax += sepmin/2. prange.append((vmin, vmax)) # start nxmax, nymax = ccd.nxmax, ccd.nymax x1 = 0.5 if x1 is None else x1 x2 = nxmax+0.5 if x2 is None else x2 y1 = 0.5 if y1 is None else y1 y2 = nymax+0.5 if y2 is None else y2 if mpl: if nc2-nc1 > 1: plt.subplot(1,nc2-nc1,nc+1) plt.axis('equal') else: if nc2-nc1 > 1: pg.pgpanl(nc-nc1+1,1) pg.pgwnad(x1,x2,y1,y2) # plot CCD ccd.plot(vmin,vmax,mpl,cmap) # per-frame finishing-off if mpl: plt.xlim(x1,x2) plt.ylim(y1,y2) else: pg.pgbox('bcnst',0,0,'bcnst',0,0) pg.pglab('X','Y','') if close: if mpl: plt.show() else: pg.pgclos() # return intensity range(s) used if len(prange) == 1: return prange[0] else: return tuple(prange)
def main(options): global keepPlotting keepPlotting = True debug = options.debug inputMS = glob.glob(options.inms) if inputMS == '': print 'Error: You must specify a MS name.' print ' Use "uvplot.py -h" to get help.' return if options.inms.endswith('/'): options.inms = options.inms[:-1] inputMSbasename = options.inms.split('/')[-1] if inputMSbasename == '': # The user has not specified the full path of the MS inputMSbasename = options.inms device = options.device if device=='?': ppgplot.pgldev() return xaxis = options.xaxis if xaxis == 'ha': print 'Adding derived columns to allow plotting hour angle...' try: pt.addDerivedMSCal(inputMS) except: print 'Failed, trying to remove and add columns...' try: pt.removeDerivedMSCal(inputMS) pt.addDerivedMSCal(inputMS) except: print 'That failed too... plotting HA seems to not be possible.' return yaxis = options.yaxis column = options.column nx, ny = options.nxy.split(',') axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin,xmax,ymin,ymax = axlimits else: print 'Error: You must specify four axis limits' return showFlags = options.flag flagCol = options.colflag showAutocorr = options.autocorr showStats = options.statistics timeslots = options.timeslots.split(',') if len(timeslots) != 2: print 'Error: Timeslots format is start,end' return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]),int(tmpspl[1])+1): antToPlot.append(j) else: print 'Error: Could not understand antenna list.' return polarizations = options.polar.split(',') for i in range(len(polarizations)): polarizations[i] = int(polarizations[i]) convertStokes = options.stokes operation = options.operation if operation != '': operation = int(operation) if convertStokes: print 'Error: Stokes conversion is not compatible with special operations' return channels = options.channels.split(',') if len(channels) != 2: print 'Error: Channels format is start,end' return for i in range(len(channels)): channels[i] = int(channels[i]) if channels[1] == -1: channels[1] = None # last element even if there is only one else: channels[1] += 1 queryMode = options.query doUnwrap = options.wrap if not queryMode: # open the graphics device, use the right number of panels ppgplot.pgbeg(device, int(nx), int(ny)) # set the font size ppgplot.pgsch(1.5) ppgplot.pgvstd() # open the main table and print some info about the MS t = pt.table(inputMS, readonly=True, ack=False) firstTime = t.query(sortlist='TIME',columns='TIME',limit=1).getcell("TIME", 0) lastTime = t.query(sortlist='TIME',columns='TIME',offset=t.nrows()-1).getcell("TIME", 0) intTime = t.getcell("INTERVAL", 0) print 'Integration time:\t%f sec' % (intTime) nTimeslots = (lastTime - firstTime) / intTime if timeslots[1] == -1: timeslots[1] = nTimeslots else: timeslots[1] += 1 print 'Number of timeslots:\t%d' % (nTimeslots) # open the antenna and spectral window subtables tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) tsp = pt.table(t.getkeyword('SPECTRAL_WINDOW'), readonly=True, ack=False) numChannels = len(tsp.getcell('CHAN_FREQ',0)) print 'Number of channels:\t%d' % (numChannels) print 'Reference frequency:\t%5.2f MHz' % (tsp.getcell('REF_FREQUENCY',0)/1.e6) # Station names antList = tant.getcol('NAME') if len(antToPlot)==1 and antToPlot[0]==-1: antToPlot = range(len(antList)) print 'Station list (only starred stations will be plotted):' for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print '%s %2d\t%s' % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[1]*intTime,str(antToPlot),str(antToPlot))) # values to use for each polarization plotColors = [1,2,3,4] labXPositions = [0.35,0.45,0.55,0.65] labYPositions = [1.0,1.0,1.0,1.0] if convertStokes: polLabels = ['I','Q','U','V'] else: polLabels = ['XX','XY','YX','YY'] # define nicely written axis labels axisLabels = {'time': 'Time', 'ha': 'Hour angle', 'chan': 'Channel', 'freq': 'Frequency [MHz]', 'amp': 'Visibility amplitude', 'real': 'Real part of visibility', 'imag': 'Imaginary part of visibility', 'phase': 'Visibility phase [radians]'} # Now we loop through the baselines ppgplot.pgpage() for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]): if not keepPlotting: return ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: if not showAutocorr: continue # Get the values to plot, strategy depends on axis type if xaxis == 'time' or xaxis == 'ha': xaxisvals = getXAxisVals(tpart, xaxis, channels) yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes) else: xaxisvals = getXAxisVals(tsp, xaxis, channels) yaxisvals = getYAxisVals(tpart, yaxis, column, operation, showFlags, flagCol, channels, doUnwrap, convertStokes, xaxistype=1) if xaxisvals == None: # This baseline must be empty, go to next one print 'No good data on baseline %s - %s' % (antList[ant1],antList[ant2]) continue if debug: print xaxisvals.shape print yaxisvals.shape for r in range(len(xaxisvals)): print '%s'%yaxisvals[r] if len(xaxisvals) != len(yaxisvals): # something is wrong print 'Error: X and Y axis types incompatible' return # Plot the data, each polarization in a different color ppgplot.pgsci(1) if xmin == '': minx = xaxisvals.min() else: minx = float(xmin) if xmax == '': maxx = xaxisvals.max() else: maxx = float(xmax) if ymin == '': miny = yaxisvals.min() if numpy.ma.getmaskarray(yaxisvals.min()): print 'All data flagged on baseline %s - %s' % (antList[ant1],antList[ant2]) continue else: miny = float(ymin) if ymax == '': maxy = yaxisvals.max() else: maxy = float(ymax) if minx == maxx: minx -= 1.0 maxx += 1.0 else: diffx = maxx - minx minx -= 0.02*diffx maxx += 0.02*diffx if miny == maxy: miny -= 1.0 maxy += 1.0 else: diffy = maxy - miny miny -= 0.02*diffy maxy += 0.02*diffy #ppgplot.pgpage() ppgplot.pgswin(minx,maxx,miny,maxy) if xaxis == 'time' or xaxis == 'ha': ppgplot.pgtbox('ZHOBCNST',0.0,0,'BCNST',0.0,0) else: ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0) #ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], '%s - %s'%(antList[ant1],antList[ant2])) #ppgplot.pgmtxt('T', 3.0, 0.5, 0.5, inputMSbasename) ppgplot.pglab(axisLabels[xaxis], axisLabels[yaxis], inputMSbasename + '(' + getDataDescription(column) + '): %s - %s'%(antList[ant1],antList[ant2])) if operation != 0: # some operations is defined if operation == 1: label = 'XX-YY' elif operation == 2: label = 'XY.YX*' else: print 'Special operation not defined' return ppgplot.pgsci(plotColors[0]) tmpvals = yaxisvals print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points of ' + label ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], label, labXPositions[1], labYPositions[1]) else: for j in polarizations: ppgplot.pgsci(plotColors[j]) tmpvals = yaxisvals[:,j] if j == polarizations[0]: print 'Baseline',antList[ant1],'-',antList[ant2],': Plotting',len(tmpvals[~tmpvals.mask]),'points per polarization' ppgplot.pgpt(xaxisvals[~tmpvals.mask], tmpvals[~tmpvals.mask], 1) addInfo(showStats, tmpvals[~tmpvals.mask], polLabels[j], labXPositions[j], labYPositions[j]) ppgplot.pgpage() # Close the PGPLOT device ppgplot.pgclos() if xaxis=='ha': print 'Removing derived columns...' pt.removeDerivedMSCal(inputMS)
def main(options): debug = options.debug MSlist = [] device = options.device if device == '?': ppgplot.pgldev() return for inmspart in options.inms.split(','): for msname in glob.iglob(inmspart): MSlist.append(msname) if len(MSlist) == 0: print('Error: You must specify at least one MS name.') print(' Use "uvplot.py -h" to get help.') return if len(MSlist) > 1: print('WARNING: Antenna selection (other than all) may not work well') print(' when plotting more than one MS. Carefully inspect the') print(' listings of antenna numbers/names!') if options.title == '': plottitle = options.inms else: plottitle = options.title axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin, xmax, ymin, ymax = axlimits else: print('Error: You must specify four axis limits') return timeslots = options.timeslots.split(',') if len(timeslots) != 3: print('Error: Timeslots format is start,skip,end') return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) if timeslots[i] < 0: print('Error: timeslots values must not be negative') return doPlotColors = options.colors antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]), int(tmpspl[1]) + 1): antToPlot.append(j) else: print('Error: Could not understand antenna list.') return queryMode = options.query plotLambda = options.kilolambda badval = 0.0 xaxisvals0 = numpy.array([]) yaxisvals0 = numpy.array([]) xaxisvals1 = numpy.array([]) yaxisvals1 = numpy.array([]) xaxisvals2 = numpy.array([]) yaxisvals2 = numpy.array([]) xaxisvals3 = numpy.array([]) yaxisvals3 = numpy.array([]) xaxisvals4 = numpy.array([]) yaxisvals4 = numpy.array([]) xaxisvals5 = numpy.array([]) yaxisvals5 = numpy.array([]) savex0 = numpy.array([]) savey0 = numpy.array([]) savex1 = numpy.array([]) savey1 = numpy.array([]) savex2 = numpy.array([]) savey2 = numpy.array([]) savex3 = numpy.array([]) savey3 = numpy.array([]) savex4 = numpy.array([]) savey4 = numpy.array([]) savex5 = numpy.array([]) savey5 = numpy.array([]) numPlotted = 0 ptcolor = 0 for inputMS in MSlist: # open the main table and print some info about the MS print('Getting info for', inputMS) t = pt.table(inputMS, readonly=True, ack=False) tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'), readonly=True, ack=False) ref_freq = tfreq.getcol('REF_FREQUENCY', nrow=1)[0] ch_freq = tfreq.getcol('CHAN_FREQ', nrow=1)[0] print('Reference frequency:\t%f MHz' % (ref_freq / 1.e6)) if options.wideband: ref_wavelength = 2.99792458e8 / ch_freq else: ref_wavelength = [2.99792458e8 / ref_freq] print('Reference wavelength:\t%f m' % (ref_wavelength[0])) if options.sameuv and numPlotted > 0: print('Assuming same uvw as first MS!') if plotLambda: for w in ref_wavelength: xaxisvals0 = numpy.append( xaxisvals0, [savex0 / w / 1000., -savex0 / w / 1000.]) yaxisvals0 = numpy.append( yaxisvals0, [savey0 / w / 1000., -savey0 / w / 1000.]) xaxisvals1 = numpy.append( xaxisvals1, [savex1 / w / 1000., -savex1 / w / 1000.]) yaxisvals1 = numpy.append( yaxisvals1, [savey1 / w / 1000., -savey1 / w / 1000.]) xaxisvals2 = numpy.append( xaxisvals2, [savex2 / w / 1000., -savex2 / w / 1000.]) yaxisvals2 = numpy.append( yaxisvals2, [savey2 / w / 1000., -savey2 / w / 1000.]) xaxisvals3 = numpy.append( xaxisvals3, [savex3 / w / 1000., -savex3 / w / 1000.]) yaxisvals3 = numpy.append( yaxisvals3, [savey3 / w / 1000., -savey3 / w / 1000.]) xaxisvals4 = numpy.append( xaxisvals4, [savex4 / w / 1000., -savex4 / w / 1000.]) yaxisvals4 = numpy.append( yaxisvals4, [savey4 / w / 1000., -savey4 / w / 1000.]) xaxisvals5 = numpy.append( xaxisvals5, [savex5 / w / 1000., -savex5 / w / 1000.]) yaxisvals5 = numpy.append( yaxisvals5, [savey5 / w / 1000., -savey5 / w / 1000.]) else: print( 'Plotting more than one MS with same uv, all in meters... do you want -k?' ) xaxisvals0 = numpy.append(xaxisvals0, [savex0, -savex0]) yaxisvals0 = numpy.append(yaxisvals0, [savey0, -savey0]) xaxisvals1 = numpy.append(xaxisvals1, [savex1, -savex1]) yaxisvals1 = numpy.append(yaxisvals1, [savey1, -savey1]) xaxisvals2 = numpy.append(xaxisvals2, [savex2, -savex2]) yaxisvals2 = numpy.append(yaxisvals2, [savey2, -savey2]) xaxisvals3 = numpy.append(xaxisvals3, [savex3, -savex3]) yaxisvals3 = numpy.append(yaxisvals3, [savey3, -savey3]) xaxisvals4 = numpy.append(xaxisvals4, [savex4, -savex4]) yaxisvals4 = numpy.append(yaxisvals4, [savey4, -savey4]) xaxisvals5 = numpy.append(xaxisvals5, [savex5, -savex5]) yaxisvals5 = numpy.append(yaxisvals5, [savey5, -savey5]) continue firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows() - 1) intTime = t.getcell("INTERVAL", 0) print('Integration time:\t%f sec' % (intTime)) nTimeslots = (lastTime - firstTime) / intTime print('Number of timeslots:\t%d' % (nTimeslots)) if timeslots[1] == 0: if nTimeslots >= 100: timeskip = int(nTimeslots / 100) else: timeskip = 1 else: timeskip = int(timeslots[1]) print('For each baseline, plotting one point every %d samples' % (timeskip)) if timeslots[2] == 0: timeslots[2] = nTimeslots # open the antenna subtable tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) # Station names antList = tant.getcol('NAME') if len(antToPlot) == 1 and antToPlot[0] == -1: antToPlot = list(range(len(antList))) print('Station list (only starred stations will be plotted):') for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print('%s %2d\t%s' % (star, i, antList[i])) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query( 'TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime + timeslots[0] * intTime, firstTime + timeslots[2] * intTime, str(antToPlot), str(antToPlot)), columns='ANTENNA1,ANTENNA2,UVW') # Now we loop through the baselines i = 0 nb = (len(antToPlot) * (len(antToPlot) - 1)) / 2 sys.stdout.write('Reading uvw for %d baselines: %04d/%04d' % (nb, i, nb)) sys.stdout.flush() for tpart in tsel.iter(["ANTENNA1", "ANTENNA2"]): ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: continue i += 1 sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d' % (i, nb)) sys.stdout.flush() if doPlotColors: stNameStr = antList[ant1][0] + antList[ant2][0] if stNameStr == 'CC': ptcolor = 0 elif stNameStr == 'RR': ptcolor = 1 elif 'C' in stNameStr and 'R' in stNameStr: ptcolor = 2 elif 'C' in stNameStr: ptcolor = 3 elif 'R' in stNameStr: ptcolor = 4 else: ptcolor = 5 # Get the values to plot uvw = tpart.getcol('UVW', rowincr=timeskip) if numPlotted == 0: savex0 = numpy.append(savex0, [uvw[:, 0], -uvw[:, 0]]) savey0 = numpy.append(savey0, [uvw[:, 1], -uvw[:, 1]]) savex1 = numpy.append(savex1, [uvw[:, 0], -uvw[:, 0]]) savey1 = numpy.append(savey1, [uvw[:, 1], -uvw[:, 1]]) savex2 = numpy.append(savex2, [uvw[:, 0], -uvw[:, 0]]) savey2 = numpy.append(savey2, [uvw[:, 1], -uvw[:, 1]]) savex3 = numpy.append(savex3, [uvw[:, 0], -uvw[:, 0]]) savey3 = numpy.append(savey3, [uvw[:, 1], -uvw[:, 1]]) savex4 = numpy.append(savex4, [uvw[:, 0], -uvw[:, 0]]) savey4 = numpy.append(savey4, [uvw[:, 1], -uvw[:, 1]]) savex5 = numpy.append(savex5, [uvw[:, 0], -uvw[:, 0]]) savey5 = numpy.append(savey5, [uvw[:, 1], -uvw[:, 1]]) if plotLambda: for w in ref_wavelength: if ptcolor == 0: xaxisvals0 = numpy.append( xaxisvals0, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals0 = numpy.append( yaxisvals0, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 1: xaxisvals1 = numpy.append( xaxisvals1, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals1 = numpy.append( yaxisvals1, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 2: xaxisvals2 = numpy.append( xaxisvals2, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals2 = numpy.append( yaxisvals2, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 3: xaxisvals3 = numpy.append( xaxisvals3, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals3 = numpy.append( yaxisvals3, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 4: xaxisvals4 = numpy.append( xaxisvals4, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals4 = numpy.append( yaxisvals4, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) elif ptcolor == 5: xaxisvals5 = numpy.append( xaxisvals5, [uvw[:, 0] / w / 1000., -uvw[:, 0] / w / 1000.]) yaxisvals5 = numpy.append( yaxisvals5, [uvw[:, 1] / w / 1000., -uvw[:, 1] / w / 1000.]) else: if ptcolor == 0: xaxisvals0 = numpy.append(xaxisvals0, [uvw[:, 0], -uvw[:, 0]]) yaxisvals0 = numpy.append(yaxisvals0, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 1: xaxisvals1 = numpy.append(xaxisvals1, [uvw[:, 0], -uvw[:, 0]]) yaxisvals1 = numpy.append(yaxisvals1, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 2: xaxisvals2 = numpy.append(xaxisvals2, [uvw[:, 0], -uvw[:, 0]]) yaxisvals2 = numpy.append(yaxisvals2, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 3: xaxisvals3 = numpy.append(xaxisvals3, [uvw[:, 0], -uvw[:, 0]]) yaxisvals3 = numpy.append(yaxisvals3, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 4: xaxisvals4 = numpy.append(xaxisvals4, [uvw[:, 0], -uvw[:, 0]]) yaxisvals4 = numpy.append(yaxisvals4, [uvw[:, 1], -uvw[:, 1]]) elif ptcolor == 5: xaxisvals5 = numpy.append(xaxisvals5, [uvw[:, 0], -uvw[:, 0]]) yaxisvals5 = numpy.append(yaxisvals5, [uvw[:, 1], -uvw[:, 1]]) #if debug: # print uvw.shape # print xaxisvals.shape # print yaxisvals.shape #else: # sys.stdout.write('.') # sys.stdout.flush() sys.stdout.write(' Done!\n') numPlotted += 1 print('Plotting uv points ...') # open the graphics device, using only one panel ppgplot.pgbeg(device, 1, 1) # set the font size ppgplot.pgsch(1) ppgplot.pgvstd() xaxisvals = numpy.append( xaxisvals0, numpy.append( xaxisvals1, numpy.append( xaxisvals2, numpy.append(xaxisvals3, numpy.append(xaxisvals4, xaxisvals5))))) yaxisvals = numpy.append( yaxisvals0, numpy.append( yaxisvals1, numpy.append( yaxisvals2, numpy.append(yaxisvals3, numpy.append(yaxisvals4, yaxisvals5))))) tmpvals0 = numpy.sqrt(xaxisvals0**2 + yaxisvals0**2) tmpvals1 = numpy.sqrt(xaxisvals1**2 + yaxisvals1**2) tmpvals2 = numpy.sqrt(xaxisvals2**2 + yaxisvals2**2) tmpvals3 = numpy.sqrt(xaxisvals3**2 + yaxisvals3**2) tmpvals4 = numpy.sqrt(xaxisvals4**2 + yaxisvals4**2) tmpvals5 = numpy.sqrt(xaxisvals5**2 + yaxisvals5**2) # Plot the data if debug: print(xaxisvals0[tmpvals0 != badval]) print(yaxisvals0[tmpvals0 != badval]) ppgplot.pgsci(1) uvmax = max(xaxisvals.max(), yaxisvals.max()) uvmin = min(xaxisvals.min(), yaxisvals.min()) uvuplim = 0.02 * (uvmax - uvmin) + uvmax uvlolim = uvmin - 0.02 * (uvmax - uvmin) if xmin == '': minx = uvlolim else: minx = float(xmin) if xmax == '': maxx = uvuplim else: maxx = float(xmax) if ymin == '': miny = uvlolim else: miny = float(ymin) if ymax == '': maxy = uvuplim else: maxy = float(ymax) if minx == maxx: minx = -1.0 maxx = 1.0 if miny == maxy: miny = -1.0 maxy = 1.0 ppgplot.pgpage() ppgplot.pgswin(minx, maxx, miny, maxy) ppgplot.pgbox('BCNST', 0.0, 0, 'BCNST', 0.0, 0) if plotLambda: ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s' % (plottitle)) else: ppgplot.pglab('u [m]', 'v [m]', '%s' % (plottitle)) ppgplot.pgpt(xaxisvals0[tmpvals0 != badval], yaxisvals0[tmpvals0 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.35, 0.5, 'C-C') ppgplot.pgsci(2) ppgplot.pgpt(xaxisvals1[tmpvals1 != badval], yaxisvals1[tmpvals1 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.50, 0.5, 'R-R') ppgplot.pgsci(4) ppgplot.pgpt(xaxisvals2[tmpvals2 != badval], yaxisvals2[tmpvals2 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'C-R') ppgplot.pgsci(3) ppgplot.pgpt(xaxisvals3[tmpvals3 != badval], yaxisvals3[tmpvals3 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.55, 0.5, 'C-I') ppgplot.pgsci(5) ppgplot.pgpt(xaxisvals4[tmpvals4 != badval], yaxisvals4[tmpvals4 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.65, 0.5, 'R-I') ppgplot.pgsci(6) ppgplot.pgpt(xaxisvals5[tmpvals5 != badval], yaxisvals5[tmpvals5 != badval], 1) #if doPlotColors: ppgplot.pgmtxt('T', 1, 0.75, 0.5, 'I-I') # Close the PGPLOT device ppgplot.pgclos()
def main(): parser = OptionParser(usage) parser.add_option("-x", "--xwin", action="store_true", dest="xwin", default=False, help="Don't make a postscript plot, just use an X-window") parser.add_option("-p", "--noplot", action="store_false", dest="makeplot", default=True, help="Look for pulses but do not generate a plot") parser.add_option("-m", "--maxwidth", type="float", dest="maxwidth", default=0.0, help="Set the max downsampling in sec (see below for default)") parser.add_option("-t", "--threshold", type="float", dest="threshold", default=5.0, help="Set a different threshold SNR (default=5.0)") parser.add_option("-s", "--start", type="float", dest="T_start", default=0.0, help="Only plot events occuring after this time (s)") parser.add_option("-e", "--end", type="float", dest="T_end", default=1e9, help="Only plot events occuring before this time (s)") parser.add_option("-g", "--glob", type="string", dest="globexp", default=None, help="Process the files from this glob expression") parser.add_option("-f", "--fast", action="store_true", dest="fast", default=False, help="Use a faster method of de-trending (2x speedup)") parser.add_option("-b", "--nobadblocks", action="store_false", dest="badblocks", default=True, help="Don't check for bad-blocks (may save strong pulses)") parser.add_option("-d", "--detrendlen", type="int", dest="detrendfact", default=1, help="Chunksize for detrending (pow-of-2 in 1000s)") (opts, args) = parser.parse_args() if len(args)==0: if opts.globexp==None: print full_usage sys.exit(0) else: args = [] for globexp in opts.globexp.split(): args += glob.glob(globexp) useffts = True dosearch = True if opts.xwin: pgplot_device = "/XWIN" else: pgplot_device = "" fftlen = 8192 # Should be a power-of-two for best speed chunklen = 8000 # Must be at least max_downfact less than fftlen assert(opts.detrendfact in [1,2,4,8,16,32]) detrendlen = opts.detrendfact*1000 if (detrendlen > chunklen): chunklen = detrendlen fftlen = int(next2_to_n(chunklen)) blocks_per_chunk = chunklen / detrendlen overlap = (fftlen - chunklen)/2 worklen = chunklen + 2*overlap # currently it is fftlen... max_downfact = 30 default_downfacts = [2, 3, 4, 6, 9, 14, 20, 30, 45, 70, 100, 150, 220, 300] if args[0].endswith(".singlepulse"): filenmbase = args[0][:args[0].rfind(".singlepulse")] dosearch = False elif args[0].endswith(".dat"): filenmbase = args[0][:args[0].rfind(".dat")] else: filenmbase = args[0] # Don't do a search, just read results and plot if not dosearch: info, DMs, candlist, num_v_DMstr = \ read_singlepulse_files(args, opts.threshold, opts.T_start, opts.T_end) orig_N, orig_dt = int(info.N), info.dt obstime = orig_N * orig_dt else: DMs = [] candlist = [] num_v_DMstr = {} # Loop over the input files for filenm in args: if filenm.endswith(".dat"): filenmbase = filenm[:filenm.rfind(".dat")] else: filenmbase = filenm info = infodata.infodata(filenmbase+".inf") DMstr = "%.2f"%info.DM DMs.append(info.DM) N, dt = int(info.N), info.dt obstime = N * dt # Choose the maximum width to search based on time instead # of bins. This helps prevent increased S/N when the downsampling # changes as the DM gets larger. if opts.maxwidth > 0.0: downfacts = [x for x in default_downfacts if x*dt <= opts.maxwidth] else: downfacts = [x for x in default_downfacts if x <= max_downfact] if len(downfacts) == 0: downfacts = [default_downfacts[0]] if (filenm == args[0]): orig_N = N orig_dt = dt if info.breaks: offregions = zip([x[1] for x in info.onoff[:-1]], [x[0] for x in info.onoff[1:]]) # If last break spans to end of file, don't read it in (its just padding) if offregions[-1][1] == N - 1: N = offregions[-1][0] + 1 outfile = open(filenmbase+'.singlepulse', mode='w') # Compute the file length in detrendlens roundN = N/detrendlen * detrendlen numchunks = roundN / chunklen # Read in the file print 'Reading "%s"...'%filenm timeseries = Num.fromfile(filenm, dtype=Num.float32, count=roundN) # Split the timeseries into chunks for detrending numblocks = roundN/detrendlen timeseries.shape = (numblocks, detrendlen) stds = Num.zeros(numblocks, dtype=Num.float64) # de-trend the data one chunk at a time print ' De-trending the data and computing statistics...' for ii, chunk in enumerate(timeseries): if opts.fast: # use median removal instead of detrending (2x speedup) tmpchunk = chunk.copy() tmpchunk.sort() med = tmpchunk[detrendlen/2] chunk -= med tmpchunk -= med else: # The detrend calls are the most expensive in the program timeseries[ii] = scipy.signal.detrend(chunk, type='linear') tmpchunk = timeseries[ii].copy() tmpchunk.sort() # The following gets rid of (hopefully) most of the # outlying values (i.e. power dropouts and single pulses) # If you throw out 5% (2.5% at bottom and 2.5% at top) # of random gaussian deviates, the measured stdev is ~0.871 # of the true stdev. Thus the 1.0/0.871=1.148 correction below. # The following is roughly .std() since we already removed the median stds[ii] = Num.sqrt((tmpchunk[detrendlen/40:-detrendlen/40]**2.0).sum() / (0.95*detrendlen)) stds *= 1.148 # sort the standard deviations and separate those with # very low or very high values sort_stds = stds.copy() sort_stds.sort() # identify the differences with the larges values (this # will split off the chunks with very low and very high stds locut = (sort_stds[1:numblocks/2+1] - sort_stds[:numblocks/2]).argmax() + 1 hicut = (sort_stds[numblocks/2+1:] - sort_stds[numblocks/2:-1]).argmax() + numblocks/2 - 2 std_stds = scipy.std(sort_stds[locut:hicut]) median_stds = sort_stds[(locut+hicut)/2] print " pseudo-median block standard deviation = %.2f" % (median_stds) if (opts.badblocks): lo_std = median_stds - 4.0 * std_stds hi_std = median_stds + 4.0 * std_stds # Determine a list of "bad" chunks. We will not search these. bad_blocks = Num.nonzero((stds < lo_std) | (stds > hi_std))[0] print " identified %d bad blocks out of %d (i.e. %.2f%%)" % \ (len(bad_blocks), len(stds), 100.0*float(len(bad_blocks))/float(len(stds))) stds[bad_blocks] = median_stds else: bad_blocks = [] print " Now searching..." # Now normalize all of the data and reshape it to 1-D timeseries /= stds[:,Num.newaxis] timeseries.shape = (roundN,) # And set the data in the bad blocks to zeros # Even though we don't search these parts, it is important # because of the overlaps for the convolutions for bad_block in bad_blocks: loind, hiind = bad_block*detrendlen, (bad_block+1)*detrendlen timeseries[loind:hiind] = 0.0 # Convert to a set for faster lookups below bad_blocks = set(bad_blocks) # Step through the data dm_candlist = [] for chunknum in xrange(numchunks): loind = chunknum*chunklen-overlap hiind = (chunknum+1)*chunklen+overlap # Take care of beginning and end of file overlap issues if (chunknum==0): # Beginning of file chunk = Num.zeros(worklen, dtype=Num.float32) chunk[overlap:] = timeseries[loind+overlap:hiind] elif (chunknum==numchunks-1): # end of the timeseries chunk = Num.zeros(worklen, dtype=Num.float32) chunk[:-overlap] = timeseries[loind:hiind-overlap] else: chunk = timeseries[loind:hiind] # Make a set with the current block numbers lowblock = blocks_per_chunk * chunknum currentblocks = set(Num.arange(blocks_per_chunk) + lowblock) localgoodblocks = Num.asarray(list(currentblocks - bad_blocks)) - lowblock # Search this chunk if it is not all bad if len(localgoodblocks): # This is the good part of the data (end effects removed) goodchunk = chunk[overlap:-overlap] # need to pass blocks/chunklen, localgoodblocks # dm_candlist, dt, opts.threshold to cython routine # Search non-downsampled data first # NOTE: these nonzero() calls are some of the most # expensive calls in the program. Best bet would # probably be to simply iterate over the goodchunk # in C and append to the candlist there. hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen # Add the candidates (which are sorted by bin) for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt dm_candlist.append(candidate(info.DM, val, time, bin, 1)) # Now do the downsampling... for downfact in downfacts: if useffts: # Note: FFT convolution is faster for _all_ downfacts, even 2 chunk2 = Num.concatenate((Num.zeros(1000), chunk, Num.zeros(1000))) goodchunk = Num.convolve(chunk2, Num.ones(downfact), mode='same') / Num.sqrt(downfact) goodchunk = goodchunk[overlap:-overlap] #O qualcosa di simile, altrimenti non so perche' trova piu' candidati! Controllare! else: # The normalization of this kernel keeps the post-smoothing RMS = 1 kernel = Num.ones(downfact, dtype=Num.float32) / \ Num.sqrt(downfact) smoothed_chunk = scipy.signal.convolve(chunk, kernel, 1) goodchunk = smoothed_chunk[overlap:-overlap] #hibins = Num.nonzero(goodchunk>opts.threshold)[0] hibins = Num.flatnonzero(goodchunk>opts.threshold) hivals = goodchunk[hibins] hibins += chunknum * chunklen hiblocks = hibins/detrendlen hibins = hibins.tolist() hivals = hivals.tolist() # Now walk through the new candidates and remove those # that are not the highest but are within downfact/2 # bins of a higher signal pulse hibins, hivals = prune_related1(hibins, hivals, downfact) # Insert the new candidates into the candlist, but # keep it sorted... for bin, val, block in zip(hibins, hivals, hiblocks): if block not in bad_blocks: time = bin * dt bisect.insort(dm_candlist, candidate(info.DM, val, time, bin, downfact)) # Now walk through the dm_candlist and remove the ones that # are within the downsample proximity of a higher # signal-to-noise pulse dm_candlist = prune_related2(dm_candlist, downfacts) print " Found %d pulse candidates"%len(dm_candlist) # Get rid of those near padding regions if info.breaks: prune_border_cases(dm_candlist, offregions) # Write the pulses to an ASCII output file if len(dm_candlist): #dm_candlist.sort(cmp_sigma) outfile.write("# DM Sigma Time (s) Sample Downfact\n") for cand in dm_candlist: outfile.write(str(cand)) outfile.close() # Add these candidates to the overall candidate list for cand in dm_candlist: candlist.append(cand) num_v_DMstr[DMstr] = len(dm_candlist) if (opts.makeplot): # Step through the candidates to make a SNR list DMs.sort() snrs = [] for cand in candlist: if not Num.isinf(cand.sigma): snrs.append(cand.sigma) if snrs: maxsnr = max(int(max(snrs)), int(opts.threshold)) + 3 else: maxsnr = int(opts.threshold) + 3 # Generate the SNR histogram snrs = Num.asarray(snrs) (num_v_snr, lo_snr, d_snr, num_out_of_range) = \ scipy.stats.histogram(snrs, int(maxsnr-opts.threshold+1), [opts.threshold, maxsnr]) snrs = Num.arange(maxsnr-opts.threshold+1, dtype=Num.float64) * d_snr \ + lo_snr + 0.5*d_snr num_v_snr = num_v_snr.astype(Num.float32) num_v_snr[num_v_snr==0.0] = 0.001 # Generate the DM histogram num_v_DM = Num.zeros(len(DMs)) for ii, DM in enumerate(DMs): num_v_DM[ii] = num_v_DMstr["%.2f"%DM] DMs = Num.asarray(DMs) # open the plot device short_filenmbase = filenmbase[:filenmbase.find("_DM")] if opts.T_end > obstime: opts.T_end = obstime if pgplot_device: ppgplot.pgopen(pgplot_device) else: if (opts.T_start > 0.0 or opts.T_end < obstime): ppgplot.pgopen(short_filenmbase+'_%.0f-%.0fs_singlepulse.ps/VPS'% (opts.T_start, opts.T_end)) else: ppgplot.pgopen(short_filenmbase+'_singlepulse.ps/VPS') ppgplot.pgpap(7.5, 1.0) # Width in inches, aspect # plot the SNR histogram ppgplot.pgsvp(0.06, 0.31, 0.6, 0.87) ppgplot.pgswin(opts.threshold, maxsnr, Num.log10(0.5), Num.log10(2*max(num_v_snr))) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCLNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(snrs, Num.log10(num_v_snr), 1) # plot the DM histogram ppgplot.pgsvp(0.39, 0.64, 0.6, 0.87) # Add [1] to num_v_DM in YMAX below so that YMIN != YMAX when max(num_v_DM)==0 ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, 0.0, 1.1*max(num_v_DM+[1])) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Number of Pulses") ppgplot.pgsch(1.0) ppgplot.pgbin(DMs, num_v_DM, 1) # plot the SNR vs DM plot ppgplot.pgsvp(0.72, 0.97, 0.6, 0.87) ppgplot.pgswin(min(DMs)-0.5, max(DMs)+0.5, opts.threshold, maxsnr) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "DM (pc cm\u-3\d)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "Signal-to-Noise") ppgplot.pgsch(1.0) cand_ts = Num.zeros(len(candlist), dtype=Num.float32) cand_SNRs = Num.zeros(len(candlist), dtype=Num.float32) cand_DMs = Num.zeros(len(candlist), dtype=Num.float32) for ii, cand in enumerate(candlist): cand_ts[ii], cand_SNRs[ii], cand_DMs[ii] = \ cand.time, cand.sigma, cand.DM ppgplot.pgpt(cand_DMs, cand_SNRs, 20) # plot the DM vs Time plot ppgplot.pgsvp(0.06, 0.97, 0.08, 0.52) ppgplot.pgswin(opts.T_start, opts.T_end, min(DMs)-0.5, max(DMs)+0.5) ppgplot.pgsch(0.8) ppgplot.pgbox("BCNST", 0, 0, "BCNST", 0, 0) ppgplot.pgmtxt('B', 2.5, 0.5, 0.5, "Time (s)") ppgplot.pgmtxt('L', 1.8, 0.5, 0.5, "DM (pc cm\u-3\d)") # Circles are symbols 20-26 in increasing order snr_range = 12.0 cand_symbols = (cand_SNRs-opts.threshold)/snr_range * 6.0 + 20.5 cand_symbols = cand_symbols.astype(Num.int32) cand_symbols[cand_symbols>26] = 26 for ii in [26, 25, 24, 23, 22, 21, 20]: inds = Num.nonzero(cand_symbols==ii)[0] ppgplot.pgpt(cand_ts[inds], cand_DMs[inds], ii) # Now fill the infomation area ppgplot.pgsvp(0.05, 0.95, 0.87, 0.97) ppgplot.pgsch(1.0) ppgplot.pgmtxt('T', 0.5, 0.0, 0.0, "Single pulse results for '%s'"%short_filenmbase) ppgplot.pgsch(0.8) # first row ppgplot.pgmtxt('T', -1.1, 0.02, 0.0, 'Source: %s'%\ info.object) ppgplot.pgmtxt('T', -1.1, 0.33, 0.0, 'RA (J2000):') ppgplot.pgmtxt('T', -1.1, 0.5, 0.0, info.RA) ppgplot.pgmtxt('T', -1.1, 0.73, 0.0, 'N samples: %.0f'%orig_N) # second row ppgplot.pgmtxt('T', -2.4, 0.02, 0.0, 'Telescope: %s'%\ info.telescope) ppgplot.pgmtxt('T', -2.4, 0.33, 0.0, 'DEC (J2000):') ppgplot.pgmtxt('T', -2.4, 0.5, 0.0, info.DEC) ppgplot.pgmtxt('T', -2.4, 0.73, 0.0, 'Sampling time: %.2f \gms'%\ (orig_dt*1e6)) # third row if info.instrument.find("pigot") >= 0: instrument = "Spigot" else: instrument = info.instrument ppgplot.pgmtxt('T', -3.7, 0.02, 0.0, 'Instrument: %s'%instrument) if (info.bary): ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dbary\u: %.12f'%info.epoch) else: ppgplot.pgmtxt('T', -3.7, 0.33, 0.0, 'MJD\dtopo\u: %.12f'%info.epoch) ppgplot.pgmtxt('T', -3.7, 0.73, 0.0, 'Freq\dctr\u: %.1f MHz'%\ ((info.numchan/2-0.5)*info.chan_width+info.lofreq)) ppgplot.pgiden() ppgplot.pgend()
def gotoit(): nbin = 10 #c=Cluster() #g=Galaxy() clusterfile = "clusters.spec.dat" print "reading in cluster file to get cluster parameters" c.creadfiles(clusterfile) print "got ", len(c.z), " clusters" c.convarray() c.Kcorr() go2 = [] #combined arrays containing all galaxies gsf = [] #combined arrays containing all galaxies gsig5 = [] gsig10 = [] gsig52r200 = [] #spec catalogs extended out to 2xR200 gsig102r200 = [] #spec catalogs extended out to 2xR200 gsig5phot = [] gsig10phot = [] sgo2 = [] #combined arrays containing all galaxies sgha = [] #combined arrays containing all galaxies sgsf = [] #combined arrays containing all galaxies sgsig5 = [] sgsig10 = [] sgsig52r200 = [] #spec catalogs extended out to 2xR200 sgsig102r200 = [] #spec catalogs extended out to 2xR200 sgsig5phot = [] sgsig10phot = [] if (mode < 1): c.getsdssphotcats() c.getsdssspeccats() gr = [] #list of median g-r colors psplotinit('summary.ps') x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .45 y3 = .55 y4 = .85 ppgplot.pgsch(1.2) #font size ppgplot.pgslw(2) #for i in range(len(c.z)): cl = [10] (xl, xu, yl, yu) = ppgplot.pgqvp(0) print "viewport = ", xl, xu, yl, yu complall = [] for i in range(len(c.z)): #for i in cl: gname = "g" + str(i) gname = Galaxy() gspecfile = "abell" + str(c.id[i]) + ".spec.dat" gname.greadfiles(gspecfile, i) print "number of members = ", len(gname.z) if len(gname.z) < 10: print "less than 10 members", len(gname.z) continue gname.convarray() #gname.cullmembers() #gname.getmemb()#get members w/in R200 #gr.append(N.average(gname.g-gname.r)) gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat" gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i) print i, c.id[i], " getnearest, first call", len(gname.ra), len( gname.sra), sum(gname.smemb) #gname.getnearest(i) (gname.sig52r200, gname.sig102r200) = gname.getnearestgen( gname.ra, gname.dec, gname.sra, gname.sdec, i ) #measure distances from ra1, dec1 to members in catalog ra2, dec2 sig52r200 = N.compress(gname.memb > 0, gname.sig52r200) gsig52r200[len(gsig5phot):] = sig52r200 sig102r200 = N.compress(gname.memb > 0, gname.sig102r200) gsig102r200[len(gsig10phot):] = sig102r200 gphotfile = "abell" + str(c.id[i]) + ".phot.dat" gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i]) gname.getnearest(i) #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot) #print gspecfile, c.z[i],c.kcorr[i] (ds5, ds10) = gname.gwritefiles(gspecfile, i) o2 = N.compress(gname.memb > 0, gname.o2) go2[len(go2):] = o2 sf = N.compress(gname.memb > 0, gname.sf) gsf[len(gsf):] = sf sig5 = N.compress(gname.memb > 0, gname.sig5) gsig5[len(gsig5):] = sig5 sig10 = N.compress(gname.memb > 0, gname.sig10) gsig10[len(gsig10):] = sig10 sig5phot = N.compress(gname.memb > 0, gname.sig5phot) gsig5phot[len(gsig5phot):] = sig5phot sig10phot = N.compress(gname.memb > 0, gname.sig10phot) gsig10phot[len(gsig10phot):] = sig10phot ds5 = N.array(ds5, 'f') ds10 = N.array(ds10, 'f') #print len(ds5),len(ds10) #ppgplot.pgsvp(xl,xu,yl,yu) ppgplot.pgsvp(0.1, .9, .08, .92) ppgplot.pgslw(7) label = 'Abell ' + str( c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i]) ppgplot.pgtext(0., 1., label) ppgplot.pgslw(2) ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-1., 3., -1., 3.) #axes limits ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u(phot) (gal/Mpc\u2\d)") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(sig10phot) y = N.log10(sig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) xp = N.array([-0.5], 'f') yp = N.array([2.5], 'f') ppgplot.pgpt(xp, yp, 17) ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot') ppgplot.pgsci(4) xp = N.array([-0.5], 'f') yp = N.array([2.2], 'f') ppgplot.pgpt(xp, yp, 21) ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot') y = N.log10(sig102r200) ppgplot.pgsch(.9) ppgplot.pgpt(x, y, 21) ppgplot.pgsch(1.2) ppgplot.pgslw(2) #line width ppgplot.pgsci(1) #ppgplot.pgenv(-200.,200.,-1.,20.,0,0) #ppgplot.pgsci(2) #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1) #ppgplot.pgsci(4) #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1) #ppgplot.pgsci(1) #ppgplot.pglab("\gD\gS","Ngal",gspecfile) #ppgplot.pgpanl(1,2) g = N.compress(gname.memb > 0, gname.g) r = N.compress(gname.memb > 0, gname.r) V = N.compress(gname.memb > 0, gname.V) dmag = N.compress(gname.memb > 0, gname.dmagnearest) dnearest = N.compress(gname.memb > 0, gname.nearest) dz = N.compress(gname.memb > 0, gname.dz) #ppgplot.pgsvp(x3,x4,y1,y2) #sets viewport #ppgplot.pgenv(-.5,3.,-1.,5.,0,0) #ppgplot.pgpt((g-V),(g-r),17) #ppgplot.pgsci(1) #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile) ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin( (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i])) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec") #ppgplot.pglab("RA",'Dec',gspecfile) ppgplot.pgsfs(2) ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i]) ppgplot.pgsls(4) ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i]) ppgplot.pgsls(1) #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.)) ppgplot.pgsci(2) ppgplot.pgpt(gname.ra, gname.dec, 17) ppgplot.pgsci(4) ppgplot.pgpt(gname.photra, gname.photdec, 21) ppgplot.pgsci(1) #calculate completeness w/in R200 dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2) dphot = N.sqrt((gname.photra - c.ra[i])**2 + (gname.photdec - c.dec[i])**2) nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot)) nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec)) s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % ( str(c.id[i]), float(nspec / nphot), nspec, nphot) print s complall.append(float(nspec / nphot)) ppgplot.pgsvp(x3, x4, y3, y4) #sets viewport #ppgplot.pgsvp(x1,x2,y3,y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-0.005, .05, -1., 1.) ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "Dist to nearest phot neighbor (deg)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) ppgplot.pgpt(dnearest, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) dm = N.compress(dnearest < 0.01, dmag) std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm)) #ppgplot.pgslw(7) #label='Abell '+str(c.id[i]) #ppgplot.pgtext(0.,1.,label) ppgplot.pgslw(2) label = '\gDM\dV\u(err) = ' + std ppgplot.pgsch(.9) ppgplot.pgtext(0., .8, label) #label = "z = %5.2f"%(c.z[i]) #ppgplot.pgtext(0.,.8,label) ppgplot.pgsch(1.2) #ppgplot.pgsvp(x3,x4,y3,y4) #sets viewport #ppgplot.pgenv(-.15,.15,-3.,3.,0,0) #ppgplot.pgsci(2) #ppgplot.pgpt(dz,dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile) ppgplot.pgsvp(x3, x4, y1, y2) #sets viewport ppgplot.pgswin(-3., 3., -1., 1.) ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i] ppgplot.pgpt(dv, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(0.,3.5,-3.,3.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((g-r),dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("g-r",'\gD Mag',gspecfile) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((V),dmag,17) #x=N.arange(-30.,30.,1.) #y=0*x #ppgplot.pgsci(1) #ppgplot.pgsls(2) #ppgplot.pgline(x,y) #ppgplot.pgsls(1) #ppgplot.pgsci(1) #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile) #ppgplot.pgpage() #ppgplot.pgpage() #combine galaxy data ppgplot.pgpage() (sssig5, sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra, gname.sdec, i) #get spec-spec local density (spsig5, spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra, gname.photdec, i) #get spec-phot local density o2 = N.compress(gname.smemb > 0, gname.so2) sgo2[len(sgo2):] = o2 ha = N.compress(gname.smemb > 0, gname.sha) sgha[len(sgha):] = ha sf = N.compress(gname.smemb > 0, gname.ssf) sgsf[len(sgsf):] = sf sig5 = N.compress(gname.smemb > 0, sssig5) sgsig5[len(sgsig5):] = sig5 sig10 = N.compress(gname.smemb > 0, sssig10) sgsig10[len(sgsig10):] = sig10 sig5phot = N.compress(gname.smemb > 0, spsig5) sgsig5phot[len(sgsig5phot):] = sig5phot sig10phot = N.compress(gname.smemb > 0, spsig10) sgsig10phot[len(sgsig10phot):] = sig10phot #gr=N.array(gr,'f') #c.assigncolor(gr) #for i in range(len(c.z)): # print c.id[i],c.z[i],c.r200[i],c.r200deg[i] print "Average Completeness w/in R200 = ", N.average(N.array( complall, 'f')) print "sig o2", len(gsig10), len(gsig10phot), len(go2) print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2) plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin) #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin) plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin) #sf frac versus sigma plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin) #sf frac versus sigma plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all', nbin) #sf frac versus sigma plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all', nbin) #sf frac versus sigma #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20) #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30) plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10) #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma psplotinit('one2one.ps') ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0) ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)", "\gS\d10\u(spec) (gal/Mpc\u2\d)", "") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(gsig10phot) y = N.log10(gsig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) ppgplot.pgsch(1.) ppgplot.pgsci(1) ppgplot.pgend()
def main(options): debug = options.debug MSlist = [] for inmspart in options.inms.split(','): for msname in glob.iglob(inmspart): MSlist.append(msname) if len(MSlist) == 0: print 'Error: You must specify at least one MS name.' print ' Use "uvplot.py -h" to get help.' return if len(MSlist) > 1: print 'WARNING: Antenna selection (other than all) may not work well' print ' when plotting more than one MS. Carefully inspect the' print ' listings of antenna numbers/names!' device = options.device if device=='?': ppgplot.pgldev() return if options.title == '': plottitle = options.inms else: plottitle = options.title axlimits = options.axlimits.split(',') if len(axlimits) == 4: xmin,xmax,ymin,ymax = axlimits else: print 'Error: You must specify four axis limits' return timeslots = options.timeslots.split(',') if len(timeslots) != 3: print 'Error: Timeslots format is start,skip,end' return for i in range(len(timeslots)): timeslots[i] = int(timeslots[i]) if timeslots[i] < 0: print 'Error: timeslots values must not be negative' return antToPlotSpl = options.antennas.split(',') antToPlot = [] for i in range(len(antToPlotSpl)): tmpspl = antToPlotSpl[i].split('..') if len(tmpspl) == 1: antToPlot.append(int(antToPlotSpl[i])) elif len(tmpspl) == 2: for j in range(int(tmpspl[0]),int(tmpspl[1])+1): antToPlot.append(j) else: print 'Error: Could not understand antenna list.' return queryMode = options.query plotLambda = options.kilolambda badval = 0.0 xaxisvals = numpy.array([]) yaxisvals = numpy.array([]) savex = numpy.array([]) savey = numpy.array([]) numPlotted = 0 for inputMS in MSlist: # open the main table and print some info about the MS print 'Getting info for', inputMS t = pt.table(inputMS, readonly=True, ack=False) tfreq = pt.table(t.getkeyword('SPECTRAL_WINDOW'),readonly=True,ack=False) ref_freq = tfreq.getcol('REF_FREQUENCY',nrow=1)[0] ch_freq = tfreq.getcol('CHAN_FREQ',nrow=1)[0] print 'Reference frequency:\t%f MHz' % (ref_freq/1.e6) if options.wideband: ref_wavelength = 2.99792458e8/ch_freq else: ref_wavelength = [2.99792458e8/ref_freq] print 'Reference wavelength:\t%f m' % (ref_wavelength[0]) if options.sameuv and numPlotted > 0: print 'Assuming same uvw as first MS!' if plotLambda: for w in ref_wavelength: xaxisvals = numpy.append(xaxisvals,[savex/w/1000.,-savex/w/1000.]) yaxisvals = numpy.append(yaxisvals,[savey/w/1000.,-savey/w/1000.]) else: print 'Plotting more than one MS with same uv, all in meters... do you want -k?' xaxisvals = numpy.append(xaxisvals,[savex,-savex]) yaxisvals = numpy.append(yaxisvals,[savey,-savey]) continue firstTime = t.getcell("TIME", 0) lastTime = t.getcell("TIME", t.nrows()-1) intTime = t.getcell("INTERVAL", 0) print 'Integration time:\t%f sec' % (intTime) nTimeslots = (lastTime - firstTime) / intTime print 'Number of timeslots:\t%d' % (nTimeslots) if timeslots[1] == 0: if nTimeslots >= 100: timeskip = int(nTimeslots/100) else: timeskip = 1 else: timeskip = int(timeslots[1]) print 'For each baseline, plotting one point every %d samples' % (timeskip) if timeslots[2] == 0: timeslots[2] = nTimeslots # open the antenna subtable tant = pt.table(t.getkeyword('ANTENNA'), readonly=True, ack=False) # Station names antList = tant.getcol('NAME') if len(antToPlot)==1 and antToPlot[0]==-1: antToPlot = range(len(antList)) print 'Station list (only starred stations will be plotted):' for i in range(len(antList)): star = ' ' if i in antToPlot: star = '*' print '%s %2d\t%s' % (star, i, antList[i]) # Bail if we're in query mode if queryMode: return # select by time from the beginning, and only use specified antennas tsel = t.query('TIME >= %f AND TIME <= %f AND ANTENNA1 IN %s AND ANTENNA2 IN %s' % (firstTime+timeslots[0]*intTime,firstTime+timeslots[2]*intTime,str(antToPlot),str(antToPlot)), columns='ANTENNA1,ANTENNA2,UVW') # Now we loop through the baselines i = 0 nb = (len(antToPlot)*(len(antToPlot)-1))/2 sys.stdout.write('Reading uvw for %d baselines: %04d/%04d'%(nb,i,nb)) sys.stdout.flush() for tpart in tsel.iter(["ANTENNA1","ANTENNA2"]): ant1 = tpart.getcell("ANTENNA1", 0) ant2 = tpart.getcell("ANTENNA2", 0) if ant1 not in antToPlot or ant2 not in antToPlot: continue if ant1 == ant2: continue i += 1 sys.stdout.write('\b\b\b\b\b\b\b\b\b%04d/%04d'%(i,nb)) sys.stdout.flush() # Get the values to plot uvw = tpart.getcol('UVW', rowincr=timeskip) if numPlotted == 0: savex = numpy.append(savex,[uvw[:,0],-uvw[:,0]]) savey = numpy.append(savey,[uvw[:,1],-uvw[:,1]]) if plotLambda: for w in ref_wavelength: xaxisvals = numpy.append(xaxisvals,[uvw[:,0]/w/1000.,-uvw[:,0]/w/1000.]) yaxisvals = numpy.append(yaxisvals,[uvw[:,1]/w/1000.,-uvw[:,1]/w/1000.]) else: xaxisvals = numpy.append(xaxisvals,[uvw[:,0],-uvw[:,0]]) yaxisvals = numpy.append(yaxisvals,[uvw[:,1],-uvw[:,1]]) #if debug: # print uvw.shape # print xaxisvals.shape # print yaxisvals.shape #else: # sys.stdout.write('.') # sys.stdout.flush() sys.stdout.write(' Done!\n') numPlotted += 1 print 'Plotting uv points ...' # open the graphics device, using only one panel ppgplot.pgbeg(device, 1, 1) # set the font size ppgplot.pgsch(1) ppgplot.pgvstd() # Plot the data if debug: print xaxisvals xaxisvals = numpy.array(xaxisvals) yaxisvals = numpy.array(yaxisvals) tmpvals = numpy.sqrt(xaxisvals**2+yaxisvals**2) ppgplot.pgsci(1) uvmax = max(xaxisvals.max(),yaxisvals.max()) uvmin = min(xaxisvals.min(),yaxisvals.min()) uvuplim = 0.02*(uvmax-uvmin)+uvmax uvlolim = uvmin-0.02*(uvmax-uvmin) if xmin == '': minx = uvlolim else: minx = float(xmin) if xmax == '': maxx = uvuplim else: maxx = float(xmax) if ymin == '': miny = uvlolim else: miny = float(ymin) if ymax == '': maxy = uvuplim else: maxy = float(ymax) if minx == maxx: minx = -1.0 maxx = 1.0 if miny == maxy: miny = -1.0 maxy = 1.0 ppgplot.pgpage() ppgplot.pgswin(minx,maxx,miny,maxy) ppgplot.pgbox('BCNST',0.0,0,'BCNST',0.0,0) if plotLambda: ppgplot.pglab('u [k\gl]', 'v [k\gl]', '%s'%(plottitle)) else: ppgplot.pglab('u [m]', 'v [m]', '%s'%(plottitle)) ppgplot.pgpt(xaxisvals[tmpvals!=badval], yaxisvals[tmpvals!=badval], 1) # Close the PGPLOT device ppgplot.pgclos()
def mratiopg(): ppgplot.pgbeg("maccratio.ps/vcps",1,1) #color port. ppgplot.pgpap(8.,1.) ppgplot.pgpage ppgplot.pgsch(1.3) #font size ppgplot.pgslw(7) #line width # 1st panel with symbols w/ stddev errorbars #ylabel="SFR (M\d\(2281) \u yr\u-1\d)" ylabel="L(H\ga) (10\u41\d erg s\u-1\d)" xlabel="M\dr\u " x1=.15 x2=.5 x3=.5 x4=.85 y1=x1 y2=x2 y3=x3 y4=x4 emarker=18 smarker=23 xmin=N.log10(1.e14) xmax=N.log10(2.5e15) #ymin=-1. #ymax=3. ymin=0. ymax=25. ppgplot.pgsvp(x1,x4,y1,y4) #sets viewport ppgplot.pgswin(xmin,xmax,ymin,ymax) #axes limits ppgplot.pgbox('blncst',1.,2,'bcvnst',2.,2) #tickmarks and labeling for i in range(len(lz1lm.mass)): m=lz1lm.mass[i] l=lz1lm.maccret[i] h=hz1lm.maccret[i] r=h/l print i,m,l,h,r #print lz1lm.maccret #print hz1lm.maccret #print hz3lm.maccret r3lm=(hz3lm.maccret)/(lz3lm.maccret) r3hm=(hz3hm.maccret)/(lz3hm.maccret) #for i in range(len(r3)): # print i,lz3.sigma[i],hz3.sigma[i],lz3.mass[i],hz3.mass[i] # print i,lz01.sigma[i],hz01.sigma[i],lz01.mass[i],hz01.mass[i] r1lm=hz1lm.maccret/lz1lm.maccret r1hm=hz1hm.maccret/lz1hm.maccret #ra=N.array(hz01.maccret,'d') #rb=N.array(lz01.maccret,'d') #r01=ra/rb #for i in range(len(r01)): #print "ratio ",hz01.maccret[i],lz01.maccret[i],ra[i],rb[i],r01[i] ppgplot.pgsci(14) ppgplot.pgsls(1) ppgplot.pgline(N.log10(lz3lm.mass),r3lm) ppgplot.pgsls(2) ppgplot.pgline(N.log10(lz3hm.mass),r3hm) ppgplot.pgsci(1) ppgplot.pgsls(1) ppgplot.pgline(N.log10(lz1lm.mass),r1lm) ppgplot.pgsls(2) ppgplot.pgline(N.log10(lz1hm.mass),r1hm) xlabel='M\dcl\u (M\d\(2281)\u)' ylabel='M\dacc\u(z=0.75) / M\dacc\u(z=0.07)' ppgplot.pgsch(1.8) ppgplot.pgslw(7) ppgplot.pgmtxt('b',2.2,0.5,0.5,ylabel) #xlabel ppgplot.pgmtxt('l',2.5,0.5,0.5,xlabel) ppgplot.pgend()