def plotgal(xg,yg,final,finalsf,ncl): ppgplot.pgslw(6) ppgplot.pgsls(1) xmin = (-1.*c.pscale[ncl]*(c.xc[ncl]-1)) xmax = (c.pscale[ncl]*(c.xmax[ncl]-c.xc[ncl])) ymin = (-1.*c.pscale[ncl]*(c.yc[ncl]-1)) ymax = (c.pscale[ncl]*(c.ymax[ncl]-c.yc[ncl])) ppgplot.pgbox("",0.0,0,"L",0.0,0) dx=5. ppgplot.pgenv(xmin-dx,xmax+dx,ymin-dx,ymax+dx,0) ppgplot.pglab("\gD DEC (\")","\gD RA (\")","") ppgplot.pgtext(-4,-4,"X") r = (0.5*c.r200pix[ncl]*c.pscale[ncl]) ppgplot.pgslw(1) ppgplot.pgsls(2) ppgplot.pgsfs(2) ppgplot.pgcirc(0,0,r) #print "cluster ",ncl," r200: ",c.r200pix[ncl],c.r200Mpc[ncl], " Mpc" ppgplot.pgslw(3) ppgplot.pgsls(1) x = (xg - c.xc[ncl])*c.pscale[ncl] y = (yg - c.yc[ncl])*c.pscale[ncl] x = (N.compress((final > 0) & (finalsf < 1), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf < 1), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,22) x = (N.compress((final > 0) & (finalsf > 0), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf > 0), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,18)
def plotngalsigmaradcuts(): nr = 1. nv = 3. bbJmax = -18. ppgplot.pgbeg("ngalmhalo-radcut.ps/vcps", 1, 1) #color port. ppgplot.pgpap(8., 1.25) ppgplot.pgpage ppgplot.pgsch(1.2) #font size ppgplot.pgslw(3) #line width # 1st panel with symbols w/ stddev errorbars str1 = "R\dp\u < " str2 = " R\dv\u" x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .425 y3 = .575 y4 = .85 xlabel = 14.25 - 14. ylabel = 1.14 ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport g.cutonlbj(bbJmax) #print "within plotradcuts, after cutonlbj, len(g.x1) = ",len(g.x1) nr = 1. c.measurengalcontam(nv, nr, g) #print "nr = ",nr, " ave contam = ",N.average(c.contam) sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut) ppgplot.pgsch(.8) ppgplot.pgslw(3) #label="R\dp\u < "+str(nr)+"R\dv\u" label = str1 + str(nr) + str2 ppgplot.pgtext(xlabel, ylabel, label) nr = .5 ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgpanl(1,1) c.measurengalcontam(nv, nr, g) #print "nr = ",nr, " ave contam = ",N.average(c.contam) sub1plotngalmcl(c.mass, c.membincut, c.obsmembincut) label = str1 + str(nr) + str2 ppgplot.pgsch(.8) ppgplot.pgslw(3) ppgplot.pgtext(xlabel, ylabel, label) ppgplot.pgend()
def plot_report_coversheet(rating_objects): """ 'rating_objects' is a list of DatabaseRater objects. """ ppgplot.pgtext(0,1,"Demo Ratings Report (%s)" % currdatetime.strftime('%c')) top = 0.9 for r in rating_objects: formatted_description = ' '.join([line.strip() for line in r.description.splitlines()]) formatted_name = ("%s:" % r.name).ljust(LINELENGTH-1) text = ("%s %s" % (formatted_name, formatted_description)) lines = [] while text: if len(text) > LINELENGTH: index = text.rfind(' ',0, LINELENGTH) lines.append(text[0:index]) text = text[index+1:] else: lines.append(text) text = '' if (top - len(lines)*LINESPACING) < 0: # text will spill over bottom of page plot_utils.nextpage(vertical=True) ppgplot.pgtext(0,1,"Demo Ratings Report (%s) (cont'd)" % currdatetime.strftime('%c')) top = 0.9 for line in lines: ppgplot.pgtext(0,top, line) top -= LINESPACING top -= PARASPACING
def plot_candidate_sheet(rating_objects, pdm_cand_id, cand_ratings, description): plot_utils.beginplot("cand_rating_report%s(%d).ps" % (currdatetime.strftime('%y%m%d'),pdm_cand_id), vertical=True) ppgplot.pgtext(0,1,"%d: %s" % (pdm_cand_id, description)) top = 0.5 first = True for ratobj, rating in zip(rating_objects,cand_ratings): if (top - PARASPACING) < 0: if first: # # Add P, DM, subints, subbands? # pfd = rating_utils.get_pfd_by_cand_id(pdm_cand_id) prof = rating_utils.prep_profile(pfd) ppgplot.pgsvp(0.10, 0.90, 0.60, 0.90) ppgplot.pgswin(0, NUMPHASE, 1.1*np.min(prof), 1.1*np.max(prof)) ppgplot.pgbox('BCNTS', 0.25,5,'BC',0.0,0) onephase = np.linspace(0,1,prof.size, endpoint=False) manyphase = np.resize(onephase,prof.size*NUMPHASE)+np.arange(0,NUMPHASE).repeat(prof.size) ppgplot.pgline(manyphase, np.resize(prof, (NUMPHASE*prof.size,))) first = False plot_utils.nextpage(vertical=True) ppgplot.pgtext(0,1,"%d: %s (cont'd)" % (pdm_cand_id, description)) top = 0.9 ppgplot.pgtext(0,top, '%s: %s' % (ratobj.name, rating)) top -= PARASPACING if first: pfd = rating_utils.get_pfd_by_cand_id(pdm_cand_id) prof = rating_utils.prep_profile(pfd) ppgplot.pgsvp(0.10, 0.90, 0.60, 0.90) ppgplot.pgswin(0, NUMPHASE, 1.1*np.min(prof), 1.1*np.max(prof)) ppgplot.pgbox('BCNTS', 0.25,5,'BC',0.0,0) ppgplot.pgline(np.linspace(0,NUMPHASE,prof.size*NUMPHASE), np.resize(prof, (NUMPHASE*prof.size,)))
def linelabel(xlabel, ylabel, dx, ystep, dxl, dyl, label): #draw key schdef = ppgplot.pgqch() ppgplot.pgsch(1.1) ppgplot.pgtext(xlabel, ylabel, label) ppgplot.pgsch(1.1) ylabel = ylabel - 2. * ystep xs = N.arange(xlabel, (xlabel + dx), .01) ys = ylabel * N.ones(len(xs), 'd') ppgplot.pgsls(1) ppgplot.pgline(xs, ys) ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Memb") ylabel = ylabel - ystep ys = ylabel * N.ones(len(xs), 'd') ppgplot.pgsls(4) ppgplot.pgline(xs, ys) ppgplot.pgtext((xlabel + dxl + dx), (ylabel - dyl), "Contam") ppgplot.pgsch(schdef) ppgplot.pgsls(1)
def main(args): with open(os.path.join(os.path.dirname(__file__), 'precisiondata.cpickle')) as filedata: exptimes, crosspoints, satpoints = pickle.load(filedata) x_range = [9, 14] interpcross = interp1d(exptimes, crosspoints, kind='linear') interpsat = interp1d(exptimes, satpoints, kind='linear') N = 5 colours = np.arange(2, 2 + N, 1) exptimes = np.arange(1, N + 1) * 10 if args.besancon: all_vmags = get_besancon_mag_data() yhigh = 0.3 title = 'Besancon' else: all_vmags = get_nomad_mag_data() yhigh = 0.4 title = 'NOMAD' ytot = yhigh * len(all_vmags) with pgh.open_plot(args.output): pg.pgvstd() pg.pgswin(x_range[0], x_range[1], 0, yhigh) for exptime, colour in zip(exptimes, colours): satpoint = interpsat(exptime) crosspoint = interpcross(exptime) selected = all_vmags[(all_vmags > satpoint) & (all_vmags <= crosspoint)] print(exptime, len(selected)) xdata, ydata = cumulative_hist(np.array(selected), min_val=x_range[0], max_val=x_range[1], norm=len(all_vmags)) ydata /= float(len(all_vmags)) with pgh.change_colour(colour): pg.pgbin(xdata, ydata, False) pg.pgbox('bcnst', 0, 0, 'bcnst', 0, 0) pg.pglab(r'V magnitude', 'High precision fraction', title) # Label the right hand side pg.pgswin(x_range[0], x_range[1], 0, ytot) pg.pgbox('', 0, 0, 'smt', 0, 0) pg.pgmtxt('r', 2., 0.5, 0.5, 'N') # Create the legend pg.pgsvp(0.7, 0.9, 0.1, 0.3) pg.pgswin(0., 1., 0., 1.) for i, (exptime, colour) in enumerate(zip(exptimes, colours)): yval = 0.1 + 0.8 * i / len(exptimes) with pgh.change_colour(colour): pg.pgline(np.array([0.2, 0.4]), np.ones(2) * yval) pg.pgtext(0.5, yval, r'{:d} s'.format(exptime))
for phase in numpy.arange(0.5, 1.51, 0.01): theta = computeViewingAngle(phase, inclination, beta, phi) phaseArray.append(phase) angleArray.append(theta) mainPlotWindow = ppgplot.pgopen("/xs") ppgplot.pgask(False) pgPlotTransform = [0, 1, 0, 0, 0, 1] ppgplot.pgsci(1) ppgplot.pgenv(min(phaseArray), max(phaseArray), 0, 180, 0, 0) ppgplot.pgline(phaseArray, angleArray) ppgplot.pgsls(2) ppgplot.pgline([0.5, 1.5], [90, 90]) ppgplot.pglab("orbital phase", "viewing angle", "Viewing angle \gh as a function of orbital phase.") ppgplot.pgtext(0.6, 150, "i:%2.0f \gb:%2.0f \gf:%2.0f" % (inclination, beta, phi)) modelPlotWindow = ppgplot.pgopen("models_i_81_b_40.ps/ps") pgPlotTransform = [0, 1, 0, 0, 0, 1] ppgplot.pgask(False) mainFluxMax = 0 mainFluxMin = 1E99 for phase in numpy.arange(0.5, 1.6, 0.1): ppgplot.pgsci(1) theta = computeViewingAngle(phase, inclination, beta, phi) intensities = ["i", "i_0", "i_1"] lineStyles = [1, 2, 3] index = 0
def gotoit(): nbin = 10 #c=Cluster() #g=Galaxy() clusterfile = "clusters.spec.dat" print "reading in cluster file to get cluster parameters" c.creadfiles(clusterfile) print "got ", len(c.z), " clusters" c.convarray() c.Kcorr() go2 = [] #combined arrays containing all galaxies gsf = [] #combined arrays containing all galaxies gsig5 = [] gsig10 = [] gsig52r200 = [] #spec catalogs extended out to 2xR200 gsig102r200 = [] #spec catalogs extended out to 2xR200 gsig5phot = [] gsig10phot = [] sgo2 = [] #combined arrays containing all galaxies sgha = [] #combined arrays containing all galaxies sgsf = [] #combined arrays containing all galaxies sgsig5 = [] sgsig10 = [] sgsig52r200 = [] #spec catalogs extended out to 2xR200 sgsig102r200 = [] #spec catalogs extended out to 2xR200 sgsig5phot = [] sgsig10phot = [] if (mode < 1): c.getsdssphotcats() c.getsdssspeccats() gr = [] #list of median g-r colors psplotinit('summary.ps') x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .45 y3 = .55 y4 = .85 ppgplot.pgsch(1.2) #font size ppgplot.pgslw(2) #for i in range(len(c.z)): cl = [10] (xl, xu, yl, yu) = ppgplot.pgqvp(0) print "viewport = ", xl, xu, yl, yu complall = [] for i in range(len(c.z)): #for i in cl: gname = "g" + str(i) gname = Galaxy() gspecfile = "abell" + str(c.id[i]) + ".spec.dat" gname.greadfiles(gspecfile, i) print "number of members = ", len(gname.z) if len(gname.z) < 10: print "less than 10 members", len(gname.z) continue gname.convarray() #gname.cullmembers() #gname.getmemb()#get members w/in R200 #gr.append(N.average(gname.g-gname.r)) gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat" gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i) print i, c.id[i], " getnearest, first call", len(gname.ra), len( gname.sra), sum(gname.smemb) #gname.getnearest(i) (gname.sig52r200, gname.sig102r200) = gname.getnearestgen( gname.ra, gname.dec, gname.sra, gname.sdec, i ) #measure distances from ra1, dec1 to members in catalog ra2, dec2 sig52r200 = N.compress(gname.memb > 0, gname.sig52r200) gsig52r200[len(gsig5phot):] = sig52r200 sig102r200 = N.compress(gname.memb > 0, gname.sig102r200) gsig102r200[len(gsig10phot):] = sig102r200 gphotfile = "abell" + str(c.id[i]) + ".phot.dat" gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i]) gname.getnearest(i) #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot) #print gspecfile, c.z[i],c.kcorr[i] (ds5, ds10) = gname.gwritefiles(gspecfile, i) o2 = N.compress(gname.memb > 0, gname.o2) go2[len(go2):] = o2 sf = N.compress(gname.memb > 0, gname.sf) gsf[len(gsf):] = sf sig5 = N.compress(gname.memb > 0, gname.sig5) gsig5[len(gsig5):] = sig5 sig10 = N.compress(gname.memb > 0, gname.sig10) gsig10[len(gsig10):] = sig10 sig5phot = N.compress(gname.memb > 0, gname.sig5phot) gsig5phot[len(gsig5phot):] = sig5phot sig10phot = N.compress(gname.memb > 0, gname.sig10phot) gsig10phot[len(gsig10phot):] = sig10phot ds5 = N.array(ds5, 'f') ds10 = N.array(ds10, 'f') #print len(ds5),len(ds10) #ppgplot.pgsvp(xl,xu,yl,yu) ppgplot.pgsvp(0.1, .9, .08, .92) ppgplot.pgslw(7) label = 'Abell ' + str( c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i]) ppgplot.pgtext(0., 1., label) ppgplot.pgslw(2) ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-1., 3., -1., 3.) #axes limits ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u(phot) (gal/Mpc\u2\d)") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(sig10phot) y = N.log10(sig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) xp = N.array([-0.5], 'f') yp = N.array([2.5], 'f') ppgplot.pgpt(xp, yp, 17) ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot') ppgplot.pgsci(4) xp = N.array([-0.5], 'f') yp = N.array([2.2], 'f') ppgplot.pgpt(xp, yp, 21) ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot') y = N.log10(sig102r200) ppgplot.pgsch(.9) ppgplot.pgpt(x, y, 21) ppgplot.pgsch(1.2) ppgplot.pgslw(2) #line width ppgplot.pgsci(1) #ppgplot.pgenv(-200.,200.,-1.,20.,0,0) #ppgplot.pgsci(2) #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1) #ppgplot.pgsci(4) #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1) #ppgplot.pgsci(1) #ppgplot.pglab("\gD\gS","Ngal",gspecfile) #ppgplot.pgpanl(1,2) g = N.compress(gname.memb > 0, gname.g) r = N.compress(gname.memb > 0, gname.r) V = N.compress(gname.memb > 0, gname.V) dmag = N.compress(gname.memb > 0, gname.dmagnearest) dnearest = N.compress(gname.memb > 0, gname.nearest) dz = N.compress(gname.memb > 0, gname.dz) #ppgplot.pgsvp(x3,x4,y1,y2) #sets viewport #ppgplot.pgenv(-.5,3.,-1.,5.,0,0) #ppgplot.pgpt((g-V),(g-r),17) #ppgplot.pgsci(1) #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile) ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin( (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i])) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec") #ppgplot.pglab("RA",'Dec',gspecfile) ppgplot.pgsfs(2) ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i]) ppgplot.pgsls(4) ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i]) ppgplot.pgsls(1) #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.)) ppgplot.pgsci(2) ppgplot.pgpt(gname.ra, gname.dec, 17) ppgplot.pgsci(4) ppgplot.pgpt(gname.photra, gname.photdec, 21) ppgplot.pgsci(1) #calculate completeness w/in R200 dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2) dphot = N.sqrt((gname.photra - c.ra[i])**2 + (gname.photdec - c.dec[i])**2) nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot)) nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec)) s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % ( str(c.id[i]), float(nspec / nphot), nspec, nphot) print s complall.append(float(nspec / nphot)) ppgplot.pgsvp(x3, x4, y3, y4) #sets viewport #ppgplot.pgsvp(x1,x2,y3,y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-0.005, .05, -1., 1.) ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "Dist to nearest phot neighbor (deg)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) ppgplot.pgpt(dnearest, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) dm = N.compress(dnearest < 0.01, dmag) std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm)) #ppgplot.pgslw(7) #label='Abell '+str(c.id[i]) #ppgplot.pgtext(0.,1.,label) ppgplot.pgslw(2) label = '\gDM\dV\u(err) = ' + std ppgplot.pgsch(.9) ppgplot.pgtext(0., .8, label) #label = "z = %5.2f"%(c.z[i]) #ppgplot.pgtext(0.,.8,label) ppgplot.pgsch(1.2) #ppgplot.pgsvp(x3,x4,y3,y4) #sets viewport #ppgplot.pgenv(-.15,.15,-3.,3.,0,0) #ppgplot.pgsci(2) #ppgplot.pgpt(dz,dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile) ppgplot.pgsvp(x3, x4, y1, y2) #sets viewport ppgplot.pgswin(-3., 3., -1., 1.) ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i] ppgplot.pgpt(dv, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(0.,3.5,-3.,3.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((g-r),dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("g-r",'\gD Mag',gspecfile) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((V),dmag,17) #x=N.arange(-30.,30.,1.) #y=0*x #ppgplot.pgsci(1) #ppgplot.pgsls(2) #ppgplot.pgline(x,y) #ppgplot.pgsls(1) #ppgplot.pgsci(1) #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile) #ppgplot.pgpage() #ppgplot.pgpage() #combine galaxy data ppgplot.pgpage() (sssig5, sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra, gname.sdec, i) #get spec-spec local density (spsig5, spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra, gname.photdec, i) #get spec-phot local density o2 = N.compress(gname.smemb > 0, gname.so2) sgo2[len(sgo2):] = o2 ha = N.compress(gname.smemb > 0, gname.sha) sgha[len(sgha):] = ha sf = N.compress(gname.smemb > 0, gname.ssf) sgsf[len(sgsf):] = sf sig5 = N.compress(gname.smemb > 0, sssig5) sgsig5[len(sgsig5):] = sig5 sig10 = N.compress(gname.smemb > 0, sssig10) sgsig10[len(sgsig10):] = sig10 sig5phot = N.compress(gname.smemb > 0, spsig5) sgsig5phot[len(sgsig5phot):] = sig5phot sig10phot = N.compress(gname.smemb > 0, spsig10) sgsig10phot[len(sgsig10phot):] = sig10phot #gr=N.array(gr,'f') #c.assigncolor(gr) #for i in range(len(c.z)): # print c.id[i],c.z[i],c.r200[i],c.r200deg[i] print "Average Completeness w/in R200 = ", N.average(N.array( complall, 'f')) print "sig o2", len(gsig10), len(gsig10phot), len(go2) print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2) plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin) #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin) plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin) #sf frac versus sigma plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin) #sf frac versus sigma plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all', nbin) #sf frac versus sigma plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all', nbin) #sf frac versus sigma #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20) #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30) plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10) #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma psplotinit('one2one.ps') ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0) ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)", "\gS\d10\u(spec) (gal/Mpc\u2\d)", "") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(gsig10phot) y = N.log10(gsig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) ppgplot.pgsch(1.) ppgplot.pgsci(1) ppgplot.pgend()
superMax = numpy.ma.max(superPixel) superMin = numpy.ma.min(superPixel) variance = numpy.ma.var(superPixel) numPixels = numpy.ma.count(superPixel) print( "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f" % (position[1], position[0], superMax, superMin, variance, variance / numPixels)) ppgplot.pgslct(spPreview['pgplotHandle']) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray(boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot['pgPlotTransform']) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot['pgplotHandle']) pointingObject = {'x': position[1], 'y': position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [ startX, startX, startX + superPixelSize, startX + superPixelSize ] ypts = [ startY, startY + superPixelSize, startY + superPixelSize, startY ] ppgplot.pgsfs(2)
superMax = numpy.ma.max(superPixel) superMin = numpy.ma.min(superPixel) variance = numpy.ma.var(superPixel) numPixels = numpy.ma.count(superPixel) print ( "[%d, %d] \tmax: %d \tmin: %d \t variance: %f \t variance/pixel: %f" % (position[1], position[0], superMax, superMin, variance, variance / numPixels) ) ppgplot.pgslct(spPreview["pgplotHandle"]) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray( boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot["pgPlotTransform"] ) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot["pgplotHandle"]) pointingObject = {"x": position[1], "y": position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [startX, startX, startX + superPixelSize, startX + superPixelSize] ypts = [startY, startY + superPixelSize, startY + superPixelSize, startY] ppgplot.pgsfs(2) ppgplot.pgsci(4) ppgplot.pgpoly(xpts, ypts) tempBitmap = numpy.zeros(numpy.shape(imageCopy)) tempBitmap = gridCircle(position[0], position[1], radius, tempBitmap) additionalMask = numpy.ma.make_mask(tempBitmap) booleanMask = numpy.ma.mask_or(booleanMask, additionalMask)
def plot_rating_sheet(rating): """ Plot a fact sheet on the ratings in the database corresponding to 'rating'. 'rating' is a dictionary of information from the MySQL database (as returned by 'get_all_rating_types()'. """ plot_utils.beginplot("rating_report%s.ps" % currdatetime.strftime('%y%m%d'), vertical=True) ch0 = ppgplot.pgqch() ppgplot.pgsch(0.5) ch = ppgplot.pgqch() ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 1 of 2" % (rating["name"], currdatetime.strftime('%c'))) ppgplot.pgsch(ch) # Plot Histograms all_ratings = get_ratings(rating["rating_id"]) range = xmin,xmax = np.min(all_ratings), np.max(all_ratings) ppgplot.pgsci(1) ppgplot.pgslw(1) #===== Total/Classified/Unclassified # Get data ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) (tot_counts, tot_left_edges)=np.histogram(all_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(tot_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, tot_counts) (clsfd_counts, clsfd_left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3,4,5,6,7)), bins=NUMBINS, range=range) ppgplot.pgsci(3) # plot classified in green ppgplot.pgbin(tot_left_edges, clsfd_counts) unclsfd_counts = tot_counts-clsfd_counts ppgplot.pgsci(2) # plot unclassified in red ppgplot.pgbin(tot_left_edges, unclsfd_counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Counts","") #===== Class 1/2/3 ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) (counts, left_edges)=np.histogram(get_ratings(rating["rating_id"], human_classification=(1,2,3)), bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Class 1/2/3","") #===== RFI ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) rfi_ratings = get_ratings(rating["rating_id"], human_classification=(4,)) (counts, left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI","") #===== Noise ppgplot.pgsvp(0.1, 0.9, 0.3, 0.45) noise_ratings = get_ratings(rating["rating_id"], human_classification=(5,)) (counts, left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","Noise","") #===== Known/Harmonic ppgplot.pgsvp(0.1, 0.9, 0.15, 0.3) known_ratings = get_ratings(rating["rating_id"], human_classification=(6,7)) (counts, left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range) ppgplot.pgswin(xmin,xmax,0,np.max(counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgsci(1) # plot in black ppgplot.pgbin(tot_left_edges, counts) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known/Harmonic","") #===== Second page for differential histograms plot_utils.nextpage(vertical=True) ppgplot.pgsch(0.75) ppgplot.pgtext(0,1,"Rating Report for %s (%s) - page 2 of 2" % (rating["name"], currdatetime.strftime('%c'))) #===== RFI - Known ppgplot.pgsvp(0.1, 0.9, 0.75, 0.9) if rfi_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - known_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Known","") #===== RFI - Noise ppgplot.pgsvp(0.1, 0.9, 0.6, 0.75) if noise_ratings.size==0 or rfi_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (rfi_counts, rfi_left_edges)=np.histogram(rfi_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = rfi_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgsch(0.75) ppgplot.pglab("","RFI - Noise","") #===== Known - Noise ppgplot.pgsvp(0.1, 0.9, 0.45, 0.6) if noise_ratings.size==0 or known_ratings.size==0: ppgplot.pgswin(0,1,0,1) ppgplot.pgbox("BC",0,0,"BC",0,0) # Y-axis label is taken care of outside of if/else (below) ppgplot.pgsch(1.0) ppgplot.pgptxt(0.5, 0.5, 0.0, 0.5, "Not enough data") else: (noise_counts, noise_left_edges)=np.histogram(noise_ratings, bins=NUMBINS, range=range, normed=True) (known_counts, known_left_edges)=np.histogram(known_ratings, bins=NUMBINS, range=range, normed=True) diff_counts = known_counts - noise_counts ppgplot.pgswin(xmin,xmax,np.min(diff_counts)*1.1,np.max(diff_counts)*1.1) ppgplot.pgsch(0.5) ppgplot.pgbox("BCNTS",0,5,"BCNTS",0,5) ppgplot.pgbin(tot_left_edges, diff_counts) ppgplot.pgsci(2) # set colour to red ppgplot.pgline(tot_left_edges, np.zeros_like(tot_left_edges)) ppgplot.pgsci(1) # reset colour to black ppgplot.pgswin(xmin,xmax,0,1) ppgplot.pgsch(0.5) ppgplot.pgbox("NTS",0,5,"",0,0) ppgplot.pgsch(0.75) ppgplot.pglab(rating["name"],"Known - Noise","") ppgplot.pgsch(ch0) # reset character height
# Plot theta as a function of orbital phase for these parameters for phase in numpy.arange(0.5, 1.51, 0.01): theta = computeViewingAngle(phase, inclination, beta, phi) phaseArray.append(phase) angleArray.append(theta) mainPlotWindow = ppgplot.pgopen("/xs") ppgplot.pgask(False) pgPlotTransform = [0, 1, 0, 0, 0, 1] ppgplot.pgsci(1) ppgplot.pgenv(min(phaseArray), max(phaseArray), 0, 180, 0, 0) ppgplot.pgline(phaseArray, angleArray) ppgplot.pgsls(2) ppgplot.pgline([0.5, 1.5], [90, 90]) ppgplot.pglab("orbital phase", "viewing angle", "Viewing angle \gh as a function of orbital phase.") ppgplot.pgtext(0.6, 150, "i:%2.0f \gb:%2.0f \gf:%2.0f"%(inclination, beta, phi)) modelPlotWindow = ppgplot.pgopen("models_i_81_b_40.ps/ps") pgPlotTransform = [0, 1, 0, 0, 0, 1] ppgplot.pgask(False) mainFluxMax = 0 mainFluxMin = 1E99 for phase in numpy.arange(0.5, 1.6, 0.1): ppgplot.pgsci(1) theta = computeViewingAngle(phase, inclination, beta, phi) intensities = ["i", "i_0", "i_1"] lineStyles = [1, 2, 3]
def plothistsfr(): DATAMIN = -4. DATAMAX = 15. NBIN = int((DATAMAX-DATAMIN)*2.) #print "ngal = ",len(g0.sfr) ppgplot.pgbox("",0.0,0,"L",0.0,0) ppgplot.pgenv(DATAMIN,DATAMAX,0,45,0) ppgplot.pglab("SFR (h\d100\u\u-2\d M\d\(2281)\u yr\u-1 \d)","Number of Galaxies","") ppgplot.pgsls(1)#dotted ppgplot.pgslw(4) #line width #ppgplot.pgsci(4) #x=N.compress((abs(g0.ew) > ewmin),g0.sfr) x=N.compress((g0.final > 0),g0.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) xlabel = 6.5 ylabel = 38. ystep = 3. dy=.4 dxl=3 dxr=.5 ppgplot.pgslw(deflw) #line width ppgplot.pgtext(xlabel,ylabel,"CL1040") xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgslw(4) #line width ppgplot.pgline(xlin,ylin) ppgplot.pgslw(5) ppgplot.pgsls(3)#dot-dash-dot-dash #ppgplot.pgsci(3) #x=N.compress((abs(g1.ew) > ewmin),g1.sfr) x=N.compress((g1.final > 0),g1.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) ylabel = ylabel - ystep xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgline(xlin,ylin) ppgplot.pgsls(1) ppgplot.pgslw(deflw) ppgplot.pgtext(xlabel,ylabel,"CL1054-12") ppgplot.pgsls(1)#dot-dash-dot-dash #ppgplot.pgsci(2) ppgplot.pgslw(2) #line width #x=N.compress((abs(g2.ew) > ewmin),g2.sfr) x=N.compress((g2.final > 0),g2.sfrc) ppgplot.pghist(len(x),x,DATAMIN,DATAMAX,NBIN,5) ylabel = ylabel - ystep ppgplot.pgslw(deflw) #line width ppgplot.pgtext(xlabel,ylabel,"CL1216") xlin = N.array([xlabel-dxl,xlabel-dxr],'f') ylin = N.array([ylabel+dy,ylabel+dy],'f') ppgplot.pgslw(2) #line width ppgplot.pgline(xlin,ylin) #print "Number in g2.ratios = ",len(g2.ratio) #for ratio in g2.ratio: # print ratio #drawbinned(x,y,5) ppgplot.pgsci(1)
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() # ppgplot arrays tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) heat_l = np.array([0.0, 0.2, 0.4, 0.6, 1.0]) heat_r = np.array([0.0, 0.5, 1.0, 1.0, 1.0]) heat_g = np.array([0.0, 0.0, 0.5, 1.0, 1.0]) heat_b = np.array([0.0, 0.0, 0.0, 0.3, 1.0]) # Loop over identifications for line in lines: # Decode id = satid(line) # Skip slow moving objects drdt = np.sqrt(id.dxdt**2 + id.dydt**2) if drdt < drdtmin: continue # Extract significant pixels x, y, t, sig = ff.significant(trksig, id.x0, id.y0, id.dxdt, id.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) #ppgplot.pgopen("/xs") ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) if (3600.0 * ff.crres[0] < 1e-3 ) | (3600.0 * ff.crres[1] < 1e-3) | ( ff.crres[0] / ff.sx > 2.0) | (ff.crres[1] / ff.sy > 2.0): ppgplot.pgsci(2) else: ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgsci(1) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.vmax, ff.vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgmove(xmin, ymin) ppgplot.pgdraw(xmax, ymax) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([x0]), np.array([y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend() elif id.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = id.x0 + id.dxdt * t, id.y0 + id.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = id.x0 + id.dxdt * tmid ymid = id.y0 + id.dydt * tmid ztrk = ndimage.gaussian_filter(ff.track(id.dxdt, id.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: continue # Skip if point is outside selection area if inside_selection(id, xmid, ymid, x0, y0) == False: continue # Format IOD line cospar = get_cospar(id.norad) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(id.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) print(iod_line) if id.catalog.find("classfd.tle") > 0: outfname = "classfd.dat" elif id.catalog.find("inttles.tle") > 0: outfname = "inttles.dat" else: outfname = "catalog.dat" f = open(outfname, "a") f.write("%s\n" % iod_line) f.close() # Plot ppgplot.pgopen( fname.replace(".fits", "") + "_%05d.png/png" % id.norad) ppgplot.pgpap(0.0, 1.0) ppgplot.pgsvp(0.1, 0.95, 0.1, 0.8) ppgplot.pgsch(0.8) ppgplot.pgmtxt( "T", 6.0, 0.0, 0.0, "UT Date: %.23s COSPAR ID: %04d" % (ff.nfd, ff.site_id)) ppgplot.pgmtxt( "T", 4.8, 0.0, 0.0, "R.A.: %10.5f (%4.1f'') Decl.: %10.5f (%4.1f'')" % (ff.crval[0], 3600.0 * ff.crres[0], ff.crval[1], 3600.0 * ff.crres[1])) ppgplot.pgmtxt( "T", 3.6, 0.0, 0.0, "FoV: %.2f\\(2218)x%.2f\\(2218) Scale: %.2f''x%.2f'' pix\\u-1\\d" % (ff.wx, ff.wy, 3600.0 * ff.sx, 3600.0 * ff.sy)) ppgplot.pgmtxt( "T", 2.4, 0.0, 0.0, "Stat: %5.1f+-%.1f (%.1f-%.1f)" % (np.mean(ff.zmax), np.std(ff.zmax), ff.vmin, ff.vmax)) ppgplot.pgmtxt("T", 0.3, 0.0, 0.0, iod_line) ppgplot.pgsch(1.0) ppgplot.pgwnad(0.0, ff.nx, 0.0, ff.ny) ppgplot.pglab("x (pix)", "y (pix)", " ") ppgplot.pgctab(heat_l, heat_r, heat_g, heat_b, 5, 1.0, 0.5) ppgplot.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppgplot.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppgplot.pgstbg(1) plot_selection(id, xmid, ymid) ppgplot.pgsci(0) if id.catalog.find("classfd.tle") > 0: ppgplot.pgsci(4) elif id.catalog.find("inttles.tle") > 0: ppgplot.pgsci(3) ppgplot.pgpt(np.array([id.x0]), np.array([id.y0]), 17) ppgplot.pgmove(id.x0, id.y0) ppgplot.pgdraw(id.x1, id.y1) ppgplot.pgpt(np.array([x0]), np.array([y0]), 4) ppgplot.pgsch(0.65) ppgplot.pgtext(np.array([id.x0]), np.array([id.y0]), " %05d" % id.norad) ppgplot.pgsch(1.0) ppgplot.pgsci(1) ppgplot.pgend()
extendPhases = copy.deepcopy(phases) for p in phases: extendPhases.append(p + 1.0) phases = extendPhases mag.extend(mag) err.extend(err) # print phases magMax = numpy.max(mag) + err[numpy.argmax(mag)] magMin = numpy.min(mag) - err[numpy.argmin(mag)] meanError = numpy.mean(err) if extraColumn: ppgplot.pgsch(1.8) ppgplot.pgsch(1.6) ppgplot.pgenv(0. ,2.0 , magMax + meanError*2, magMin - meanError*2, 0, 0) # ppgplot.pglab("Phase", "CRTS mag", "Phase plot: %s [%d]"%(o.id, len(phases)/2) ) ppgplot.pglab("Phase", "CRTS mag", "WD%s"%o.id) ppgplot.pgtext(0.1, magMax + meanError*2 - 0.01, "%.2f d"%(o.ephemeris.Period)) ppgplot.pgsch(1.0) ppgplot.pgpt(phases, mag) ppgplot.pgerrb(2, phases, mag, err, 0) ppgplot.pgerrb(4, phases, mag, err, 0) matplotlib.pyplot.xlabel("Phase", size = labelSize) matplotlib.pyplot.ylabel('CRTS magnitude', size = labelSize) matplotlib.pyplot.errorbar(phases, mag, color='k', yerr=err, fmt = '.', ecolor='0.75', capsize=0) if extraColumn: additionalData = o.getColumn(extraColumnName) additionalData.extend(additionalData) dataRange = numpy.max(additionalData) - numpy.min(additionalData) ppgplot.pgsch(1.8) ppgplot.pgenv(0, 2, numpy.min(additionalData), numpy.max(additionalData), 0, 0) ppgplot.pglab("Phase", extraColumnName, "")
day = sys.argv[4]#ARGV[3] # print "TODAY year month day\n " # Read LMST ######################################################## #calendar_buf = `echo m 1 year | skycalendar` #calendar_buf =~ m/month day\//g #(calendar) = split (/\n/, ') (buf, buf,buf, jdmid, hour,min,sec,ss_hour, ss_min, twie_hour,twie_min, twib_hour, twib_min, sr_hour, sr_min) = calendar.split()#/\s+/, calendar) ppgplot.pgsch(0.8) # character height (size) ppgplot.pgslw(2) # line width ppgplot.pgtext(6.5,0.80,filename) ppgplot.pgsch(0.6) # character height (size) ppgplot.pgtext(-10.32,0.80,str(year)) ppgplot.pgtext(-9.5,0.80,str(month)) ppgplot.pgtext(-8.9,0.80,str(day)) ppgplot.pgtext(-8,0.80,"LMST Midnight") ppgplot.pgtext(-4.8,0.80,"hour") ppgplot.pgtext(-4.25,0.80,"min") ppgplot.pgtext(-3.75,0.80,"sec") ppgplot.pgtext(-8,0.84,"Sun Set") ppgplot.pgtext(-4.8,0.84,"ss_hour") ppgplot.pgtext(-4.25,0.84,"ss_min")
labx = 'Fourier Frequency Offset (bins)' laby = 'Fourier Frequency Derivative (bins)' contours = num.asarray([0.1, 0.3, 0.5, 0.7, 0.9]) imfract = 0.65 margin = 0.08 ppgplot.pgopen(device) ppgplot.pgpap(0.0, 1.0) ppgplot.pgpage() # Give z and w values and power change ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin + imfract, 1.0 - margin / 2) ppgplot.pgswin(0.0, 1.0, 0.0, 1.0) ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp) ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp) ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z) ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w) # freq cut ppgplot.pgsvp(margin, margin + imfract, margin + imfract, 1.0 - margin / 2) ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1) ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0) ppgplot.pgline(rs, freqcut) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power") #fdot cut ppgplot.pgsvp(margin + imfract, 1.0 - margin / 2, margin, margin + imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0)
device='/XWIN' labx='Fourier Frequency Offset (bins)' laby='Fourier Frequency Derivative (bins)' contours = num.asarray([0.1, 0.3, 0.5, 0.7, 0.9]) imfract = 0.65 margin = 0.08 ppgplot.pgopen(device) ppgplot.pgpap(0.0, 1.0) ppgplot.pgpage() # Give z and w values and power change ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin+imfract, 1.0-margin/2) ppgplot.pgswin(0.0, 1.0, 0.0, 1.0) ppgplot.pgtext(0.1, 0.8, "Frac Recovered" % frp) ppgplot.pgtext(0.2, 0.65, "Power = %.3f" % frp) ppgplot.pgtext(0.1, 0.4, "signal z = %.1f" % z) ppgplot.pgtext(0.1, 0.25, "signal w = %.1f" % w) # freq cut ppgplot.pgsvp(margin, margin+imfract, margin+imfract, 1.0-margin/2) ppgplot.pgswin(min(rs), max(rs), -0.1, 1.1) ppgplot.pgbox("BCST", 0.0, 0, "BCNST", 0.0, 0) ppgplot.pgline(rs, freqcut) ppgplot.pgmtxt("L", 2.0, 0.5, 0.5, "Relative Power"); #fdot cut ppgplot.pgsvp(margin+imfract, 1.0-margin/2, margin, margin+imfract) ppgplot.pgswin(-0.1, 1.1, min(zs), max(zs)) ppgplot.pgbox("BCNST", 0.0, 0, "BCST", 0.0, 0)
def extract_tracks(fname, trkrmin, drdtmin, trksig, ntrkmin, path, results_path): # Read four frame ff = fourframe(fname) # Skip saturated frames if np.sum(ff.zavg > 240.0) / float(ff.nx * ff.ny) > 0.95: return # Read satelite IDs try: f = open(fname + ".id") except OSError: print("Cannot open", fname + ".id") else: lines = f.readlines() f.close() tr = np.array([-0.5, 1.0, 0.0, -0.5, 0.0, 1.0]) # Parse identifications idents = [satid(line) for line in lines] # Identify unknowns for ident0 in idents: if ident0.catalog == "unidentified": for ident1 in idents: if ident1.catalog == "unidentified": continue # Find matches p1 = inside_selection(ident1, ident0.t0, ident0.x0, ident0.y0) p2 = inside_selection(ident1, ident0.t1, ident0.x1, ident0.y1) # Match found if p1 and p2: # Copy info ident0.norad = ident1.norad ident0.catalog = ident1.catalog ident0.state = ident1.state ident1.state = "remove" break # Loop over identifications for ident in idents: # Skip superseded unknowns if ident.state == "remove": continue # Skip slow moving objects drdt = np.sqrt(ident.dxdt**2 + ident.dydt**2) if drdt < drdtmin: continue # Extract significant pixels along a track x, y, t, sig = ff.significant_pixels_along_track( trksig, ident.x0, ident.y0, ident.dxdt, ident.dydt, trkrmin) # Fit tracks if len(t) > ntrkmin: # Get times tmin = np.min(t) tmax = np.max(t) tmid = 0.5 * (tmax + tmin) mjd = ff.mjd + tmid / 86400.0 # Skip if no variance in time if np.std(t - tmid) == 0.0: continue # Very simple polynomial fit; no weighting, no cleaning px = np.polyfit(t - tmid, x, 1) py = np.polyfit(t - tmid, y, 1) # Extract results x0, y0 = px[1], py[1] dxdt, dydt = px[0], py[0] xmin = x0 + dxdt * (tmin - tmid) ymin = y0 + dydt * (tmin - tmid) xmax = x0 + dxdt * (tmax - tmid) ymax = y0 + dydt * (tmax - tmid) cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot plot_header(fname.replace(".fits", "_%05d.png/png" % ident.norad), ff, iod_line) ppg.pgimag(ff.zmax, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, ff.zmaxmax, ff.zmaxmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgmove(xmin, ymin) ppg.pgdraw(xmax, ymax) ppg.pgsch(0.65) ppg.pgtext(np.array([x0]), np.array([y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line) elif ident.catalog.find("classfd.tle") > 0: # Track and stack t = np.linspace(0.0, ff.texp) x, y = ident.x0 + ident.dxdt * t, ident.y0 + ident.dydt * t c = (x > 0) & (x < ff.nx) & (y > 0) & (y < ff.ny) # Skip if no points selected if np.sum(c) == 0: store_not_seen(ident, fname, results_path) continue # Compute track tmid = np.mean(t[c]) mjd = ff.mjd + tmid / 86400.0 xmid = ident.x0 + ident.dxdt * tmid ymid = ident.y0 + ident.dydt * tmid ztrk = ndimage.gaussian_filter( ff.track(ident.dxdt, ident.dydt, tmid), 1.0) vmin = np.mean(ztrk) - 2.0 * np.std(ztrk) vmax = np.mean(ztrk) + 6.0 * np.std(ztrk) # Select region xmin = int(xmid - 100) xmax = int(xmid + 100) ymin = int(ymid - 100) ymax = int(ymid + 100) if xmin < 0: xmin = 0 if ymin < 0: ymin = 0 if xmax > ff.nx: xmax = ff.nx - 1 if ymax > ff.ny: ymax = ff.ny - 1 # Find peak x0, y0, w, sigma = peakfind(ztrk[ymin:ymax, xmin:xmax]) x0 += xmin y0 += ymin # Skip if peak is not significant if sigma < trksig: store_not_seen(ident, fname, results_path) continue # Skip if point is outside selection area if inside_selection(ident, tmid, x0, y0) is False: store_not_seen(ident, fname, results_path) continue # Format IOD line cospar = get_cospar(ident.norad, ff.nfd) obs = observation(ff, mjd, x0, y0) iod_line = "%s" % format_iod_line(ident.norad, cospar, ff.site_id, obs.nfd, obs.ra, obs.de) # Create diagnostic plot pngfile = fname.replace(".fits", "_%05d.png" % ident.norad) plot_header(pngfile + "/png", ff, iod_line) ppg.pgimag(ztrk, ff.nx, ff.ny, 0, ff.nx - 1, 0, ff.ny - 1, vmax, vmin, tr) ppg.pgbox("BCTSNI", 0., 0, "BCTSNI", 0., 0) ppg.pgstbg(1) plot_selection(ident, xmid, ymid) ppg.pgsci(0) if ident.catalog.find("classfd.tle") > 0: ppg.pgsci(4) elif ident.catalog.find("inttles.tle") > 0: ppg.pgsci(3) ppg.pgpt(np.array([ident.x0]), np.array([ident.y0]), 17) ppg.pgmove(ident.x0, ident.y0) ppg.pgdraw(ident.x1, ident.y1) ppg.pgpt(np.array([x0]), np.array([y0]), 4) ppg.pgsch(0.65) ppg.pgtext(np.array([ident.x0]), np.array([ident.y0]), " %05d" % ident.norad) ppg.pgsch(1.0) ppg.pgsci(1) ppg.pgend() # Store results store_results(ident, fname, results_path, iod_line)
k = 1.2807e-16 #erg K l = N.arange(2000., 50000., 1000.) #wavelength in A l = l * 1.e-8 #convert to cm T = 40000. #K B = 2. * h * c**2 / (l**5) / (N.exp(h * c / (l * k * T)) - 1) / 1.e14 l = l * 1.e4 xmin = 1.15 * min(l) xmax = max(l) ymin = min(B) ymax = 1.2 * max(B) my.psplotinit("blackbody.ps") ppgplot.pgbox("", 0.0, 0, "", 0.0, 0) ppgplot.pgenv(xmin, xmax, ymin, ymax, 0, 0) ppgplot.pglab("Wavelength", "Energy Output/second", "") ppgplot.pgsci(4) ppgplot.pgline(l, B) ppgplot.pgtext(.6, 3., 'Star A') ppgplot.pgtext(.6, -.5, 'Blue') #T=20000.#K #B=2.*h*c**2/(l**5)/(N.exp(h*c/(l*k*T))-1) l = (l * 1.e-4 + 20000e-8) * 1.e4 ppgplot.pgsci(2) ppgplot.pgline(l, B) ppgplot.pgtext(2.6, 3., 'Star B') ppgplot.pgtext(3.6, -.5, 'Red') ppgplot.pgsci(1) ppgplot.pgend()