Example #1
0
def plot_pca_components(filename, components):
    colormap = brewer2mpl.get_map('Set1', 'qualitative', 9)
    p = Ppl(colormap, alpha=1)
    fig, ax = plt.subplots(1)
    p.pcolormesh(fig, ax, components.values)
    ax.set_xticks([])
    yticks = np.linspace(len(components) - 0.5, 0.5, len(components))
    ax.set_yticks(yticks)
    y_ticklabels = map(lambda x: 'PCA %s'%x, range(len(components)))
    ax.set_yticklabels(y_ticklabels)
    fig.savefig(filename)
    return fig, ax
Example #2
0
def plot_correlation_matrix(filename, correlation_matrix, labels):
    size = correlation_matrix.shape[0]
    colormap = brewer2mpl.get_map('Set1', 'qualitative', 9)
    p = Ppl(colormap, alpha=1)
    fig, ax = plt.subplots(1)
    #masked_jaccard = np.ma.masked_where(np.isnan(jaccard_matrix), jaccard_matrix)
    p.pcolormesh(fig, ax, correlation_matrix)
    #ax.imshow(jaccard_matrix, interpolation = 'none')
    ax.set_xticks([])
    yticks = np.linspace(size - 0.5, 0.5, size)
    ax.set_yticks(yticks)
    labels.reverse()
    ax.set_yticklabels(labels)
    ax.set_xticks(yticks)
    ax.set_xticklabels(labels)
    fig.savefig(filename)
    return fig, ax
Example #3
0
def plot_group_overlap(filename, jaccard_matrix):
    size = jaccard_matrix.shape[0]
    colormap = brewer2mpl.get_map('Set1', 'qualitative', 9)
    p = Ppl(colormap, alpha=1)
    fig, ax = plt.subplots(1)
    masked_jaccard = np.ma.masked_where(np.isnan(jaccard_matrix), jaccard_matrix)
    p.pcolormesh(fig, ax, masked_jaccard)
    #ax.imshow(jaccard_matrix, interpolation = 'none')
    ax.set_xticks([])
    yticks = np.linspace(size - 0.5, 0.5, size)
    ax.set_yticks(yticks)
    y_ticklabels = map(lambda x: 'F%s'%x, range(1,size+1))
    y_ticklabels.reverse()
    ax.set_yticklabels(y_ticklabels)
    ax.set_xticks(yticks)
    ax.set_xticklabels(y_ticklabels)
    fig.savefig(filename)
    return fig, ax
Example #4
0
def plot_image_matrix(filename, jaccard_matrix, x_ticklabels = None, y_ticklabels = None):
    colormap = brewer2mpl.get_map('Set1', 'qualitative', 9)
    p = Ppl(colormap, alpha=1)
    fig, ax = plt.subplots(1)
    masked_jaccard = np.ma.masked_where(np.isnan(jaccard_matrix), jaccard_matrix)
    p.pcolormesh(fig, ax, masked_jaccard)
    print x_ticklabels
    print y_ticklabels
    #ax.imshow(jaccard_matrix, interpolation = 'none')
    #ax.set_xticks([])
    yticks = range(jaccard_matrix.shape[0]+1)
    xticks = range(jaccard_matrix.shape[1]+1)
    ax.set_yticks(yticks)
    ax.set_xticks(xticks)
    #x_ticklabels.reverse()
    ax.set_yticklabels(y_ticklabels)
    ax.set_xticklabels(x_ticklabels)
    ax.set_ylabel(fl('ratioagent'))
    ax.set_xlabel(fl('ratiolatency'))
    fig.savefig(filename)
    return fig, ax