Example #1
0
def perform_mass_test(args):
    """Do a massive simulation on this problem."""
    env, floor = construct_env()
    env_name = str(env)
    env.out_vio_step = 1
    print('Environment is %s' % env_name)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    assert sim_n == 1000
    v_x0, v_xf, v_flag, v_goal = pu.policy_rollout(env, config, sim_n, show=False, return_success=True, return_goal=True)
    n_succeed = np.sum(v_flag == 1)
    n_collision = np.sum(v_flag == -1)
    print('succeed in %d / %d' % (n_succeed, sim_n))
    print('collision in %d / %d' % (n_collision, sim_n))
    print('0.1: ', np.sum(np.linalg.norm(v_xf - v_goal, axis=1) < 0.1))
    with open('succeed_log.txt', 'at') as f:
        f.write('Env:%s' % env_name)
        f.write('Succeed: %d' % n_succeed)
        f.write('Collision: %d' % n_collision)
    return
    floor.draw(ax)
    ax.scatter(*v_x0[mask0, :2].T, label='Succeed')
    ax.scatter(*v_x0[~mask0, :2].T, label='Failure')
    ax.legend()
    fig.savefig('gallery/%s-massive-sim-x0.pdf' % env_name)
    plt.show()
def show_the_model(args):
    """Show the problem"""
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SensorSingleGoalProblem(floor, goal)
    if args.novio:
        env.out_vio_step = 1
    if args.harder:
        env.x0lb[0] = 0.1
        env.x0ub[0] = 0.9
        env.x0lb[1] = 0.1
        env.x0ub[1] = 0.9
    env_name = str(env)
    print('Environment is %s' % env_name)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    v_x0, v_xf, v_traj = pu.policy_rollout(env, config, sim_n, False, True)
    plt.switch_backend('TkAgg')
    fig, axes = pl.subplots(sim_n)
    for i in range(sim_n):
        ax = axes[i]
        sim_rst = v_traj[i]
        x, u, dt = sim_rst['state'], sim_rst['action'], sim_rst['dt']
        floor.draw(ax)
        circle1 = plt.Circle((goal[0], goal[1]), 0.05, color='g')
        ax.add_artist(circle1)
        ax.plot(*x[:, :2].T)
    plt.savefig('gallery/%s-%d-cases.pdf' % (env_name, sim_n))
    plt.show()
Example #3
0
def show_the_model(args):
    """Show the problem"""
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SingleGoalProblem(floor, goal)
    env.x0lb[:2] = [0.1, 0.1]
    env.x0ub[:2] = [0.9, 0.9]
    if args.novio:
        env.out_vio_step = 1
    env_name = str(env)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    v_x0, v_xf, v_traj = pu.policy_rollout(env, config, sim_n, False, True)
    # fig, ax = pld.get3dAxis()
    matplotlib.use('TkAgg')
    plt.switch_backend('TkAgg')
    fig, axes = pl.subplots(sim_n)
    for i in range(sim_n):
        sim_rst = v_traj[i]
        x, u, dt = sim_rst['state'], sim_rst['action'], sim_rst['dt']
        ax = axes[i]
        floor.draw(ax)
        circle1 = plt.Circle((0.8, 0.8), 0.05, color='g')
        ax.add_artist(circle1)
        ax.plot(*x[:, :2].T)
    fig.tight_layout()
    plt.savefig('gallery/%s-%d-cases.pdf' % (env_name, sim_n))
    plt.show()
Example #4
0
def train_the_model(args):
    """Train a model"""
    env, floor, update_fun = construct_env(args)
    env_name = 'update_%s' % str(env)
    config = pu.get_train_gym_config(env_name=env_name, seed=np.random.randint(100), num_processes=1, num_frames=1e6)
    # config['warm_model'] = os.path.join(config['save_dir'], str(env) + ".pt")
    pu.train_changing_gym_model(env, config, update_fun)
Example #5
0
def perform_massive_test(args):
    """Perform some simulation and see the results."""
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SingleGoalProblem(floor, goal)
    env.x0lb[:2] = [0.1, 0.1]
    env.x0ub[:2] = [0.9, 0.9]
    if args.novio:
        env.out_vio_step = 1
    env_name = str(env)
    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    assert sim_n == 1000
    v_x0, v_xf, v_flag = pu.policy_rollout(env,
                                           config,
                                           sim_n,
                                           show=False,
                                           return_success=True)
    mask0 = v_flag == 1
    collision = np.sum(v_flag == -1)
    print('succeed in %d / %d' % (np.sum(mask0), sim_n))
    print('collision in %d / %d' % (collision, sim_n))
    with open('succeed_log.txt', 'wt') as f:
        f.write('Env:%s' % env_name)
        f.write('Succeed: %d' % np.sum(mask0))
        f.write('Collision: %d' % collision)
Example #6
0
def train_the_model(args):
    """Train a model for this particular problem."""
    # construct the fix world thing
    env, floor = construct_env()
    env_name = str(env)
    print('Environment is %s' % env_name)
    config = pu.get_train_gym_config(env_name=env_name, cuda=True, seed=np.random.randint(10000), num_processes=1)
    pu.train_a_gym_model(env, config)
def perform_final_test(args):
    """Run it many times."""
    env, floor = construct_env(args)
    env_name = str(env)
    for i in range(10):
        use_env_name = '%s-(%d)' % (env_name, i)
        config = pu.get_train_gym_config(env_name=use_env_name, seed=np.random.randint(10000), num_frames=2e6)
        pu.train_a_gym_model(env, config)
Example #8
0
def perform_final_test(args):
    """Train a few on several seeds."""
    env, floor = construct_env()
    env.glb[:] = [0.1, 0.1, 0, 0]
    env.gub[:] = [0.9, 0.9, 0, 0]
    env.x0lb[0] = 0.1
    env.x0ub[0] = 0.9
    env.x0lb[1] = 0.1
    env.x0ub[1] = 0.9
    env_name = str(env)
    for i in range(10):
        use_env_name = env_name + '-(%d)' % i
        print('Environment is %s' % env_name)
        config = pu.get_train_gym_config(env_name=use_env_name, cuda=True, seed=np.random.randint(10000), num_processes=4, num_frames=1e7)
        pu.train_a_gym_model(env, config)
Example #9
0
def train_the_model(args):
    """Train a model for this particular problem."""
    # construct the fix world thing
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SingleGoalProblem(floor, goal)
    env.x0lb[:2] = [0.1, 0.1]
    env.x0ub[:2] = [0.9, 0.9]
    if args.novio:
        env.out_vio_step = 1
    # env.disable_collision()
    # env.disable_bound_check()
    env_name = str(env)
    config = pu.get_train_gym_config(env_name=env_name,
                                     seed=np.random.randint(10000))
    pu.train_a_gym_model(env, config)
def train_the_model(args):
    """Train a model for this particular problem."""
    # construct the fix world thing
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SensorSingleGoalProblem(floor, goal)
    if args.novio:
        env.out_vio_step = 1
    if args.harder:
        env.x0lb[0] = 0.1
        env.x0ub[0] = 0.9
        env.x0lb[1] = 0.1
        env.x0ub[1] = 0.9
    env_name = str(env)
    print('Environment is %s' % env_name)
    config = pu.get_train_gym_config(env_name=env_name, cuda=True, seed=np.random.randint(10000))
    pu.train_a_gym_model(env, config)
Example #11
0
def show_the_model(args):
    """Show the model"""
    env, floor, update_fun = construct_env(args)
    env_name = 'update_%s' % str(env)
    config = pu.get_train_gym_config(env_name=env_name, seed=np.random.randint(100), num_frames=2e6)
    sim_n = args.num
    v_x0, v_xf, v_traj = pu.policy_rollout(env, config, sim_n, show=False, return_traj=True)
    plt.switch_backend('TkAgg')
    fig, axes = pl.subplots(sim_n)
    for i in range(sim_n):
        ax = axes[i]
        sim_rst = v_traj[i]
        x, u, dt = sim_rst['state'], sim_rst['action'], sim_rst['dt']
        floor.draw(ax)
        ax.plot(*x[:, :2].T)
    plt.savefig('gallery/%s-%d-cases.pdf' % (env_name, sim_n))
    plt.show()
Example #12
0
def train_the_model(args):
    """Train a model for this particular problem."""
    # construct the fix world thing
    env, env_name = model_build(fix=args.fix,
                                small=args.small,
                                medium=args.medium,
                                medhard=args.medhard)
    num_frames = 3e5
    save_step = 1e5
    if args.small:
        num_frames = 1e6
        save_step = None
    config = pu.get_train_gym_config(env_name=env_name,
                                     log_dir='logs/dubin',
                                     seed=np.random.randint(10000),
                                     num_frames=num_frames,
                                     save_interval=1000,
                                     save_step=save_step)
    pu.train_a_gym_model(env, config)
def perform_mass_test(args):
    """Do a massive simulation on this problem."""
    env, floor = construct_env(args)
    env_name = str(env)
    env.out_vio_step = 1
    print('Environment is %s' % env_name)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    v_x0, v_xf, v_flag, v_goal = pu.policy_rollout(env, config, sim_n, show=False, return_success=True, return_goal=True)
    succeed = np.sum(v_flag == 1)
    collision = np.sum(v_flag == -1)
    print('succeed in %d / %d' % (succeed, sim_n))
    print('collision in %d / %d' % (collision, sim_n))
    print('0.1:', np.sum(np.linalg.norm(v_xf - v_goal, axis=1) < 0.1))
    with open('succeed_log.txt', 'at') as f:
        f.write('Env:%s' % env_name)
        f.write('Succeed: %d' % succeed)
        f.write('Collision: %d' % collision)
    return
Example #14
0
def show_the_model(args):
    """Show the problem"""
    env, floor = construct_env()
    env_name = str(env)
    print('Environment is %s' % env_name)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    v_x0, v_xf, v_traj, v_goal = pu.policy_rollout(env, config, sim_n, show=False, return_traj=True, return_goal=True)
    plt.switch_backend('TkAgg')
    fig, axes = pl.subplots(sim_n)
    for i in range(sim_n):
        ax = axes[i]
        sim_rst = v_traj[i]
        goal = v_goal[i]
        x, u, dt = sim_rst['state'], sim_rst['action'], sim_rst['dt']
        floor.draw(ax)
        circle1 = plt.Circle((goal[0], goal[1]), 0.05, color='g')
        ax.add_artist(circle1)
        ax.plot(*x[:, :2].T)
    plt.savefig('gallery/%s-%d-cases.pdf' % (env_name, sim_n))
    plt.show()
def perform_mass_test(args):
    """Do a massive simulation on this problem."""
    floor = construct_default_floor_plan()
    goal = np.array([0.8, 0.8])
    env = SensorSingleGoalProblem(floor, goal)
    if args.novio:
        env.out_vio_step = 1
    env.x0lb[0] = 0.1
    env.x0ub[0] = 0.9
    env.x0lb[1] = 0.1
    env.x0ub[1] = 0.9
    env_name = str(env)
    env.out_vio_step = 1  # do this anyway
    print('Environment is %s' % env_name)

    config = pu.get_train_gym_config(env_name=env_name)
    sim_n = args.num
    v_x0, v_xf, v_flag = pu.policy_rollout(env, config, sim_n, show=False, return_success=True)
    succeed = np.sum(v_flag == 1)
    collision = np.sum(v_flag == -1)
    print('succeed in %d / %d' % (succeed, sim_n))
    print('collision in %d / %d' % (collision, sim_n))
    print('0.1:', np.sum(np.linalg.norm(v_xf - np.array([0.8, 0.8, 0, 0]), axis=1) < 0.1))
    with open('succeed_log.txt', 'at') as f:
        f.write('Env:%s' % env_name)
        f.write('Succeed: %d' % succeed)
        f.write('Collision: %d' % collision)
    return
    fig, ax = pl.subplots()
    plt.switch_backend('TkAgg')
    floor.draw(ax)
    ax.scatter(*v_x0[mask0, :2].T, label='Succeed')
    ax.scatter(*v_x0[~mask0, :2].T, label='Failure')
    ax.legend()
    fig.savefig('gallery/%s-massive-sim-x0.pdf' % env_name)
    plt.show()
Example #16
0
def show_the_model(args):
    """Show the problem"""
    matplotlib.use('TkAgg')
    plt.switch_backend('TkAgg')
    env, env_name = model_build(fix=args.fix,
                                small=args.small,
                                medium=args.medium,
                                medhard=args.medhard)
    config = pu.get_train_gym_config(env_name=env_name,
                                     seed=np.random.randint(10000))
    sim_n = 200
    if args.small:
        sim_n = 200
    if args.medium:
        sim_n = 500
    valid_x0 = None  # use this to load validation set
    if args.valid:
        valid_x0 = np.load(VALIDATION_SET)['x0']
        sim_n = valid_x0.shape[0]
    v_x0, v_xf, v_traj = pu.policy_rollout(env,
                                           config,
                                           sim_n,
                                           show=args.render,
                                           return_traj=True,
                                           valid_x0=valid_x0)
    v_xf_norm = np.linalg.norm(v_xf, axis=1)
    level = [0.1, 0.5, 1, 2]
    for level_ in level:
        print('level %f count %d' % (level_, np.sum(v_xf_norm < level_)))
    # find closest state
    v_min_state_norm = np.zeros(sim_n)
    for i in range(sim_n):
        v_min_state_norm[i] = np.amin(
            np.linalg.norm(v_traj[i]['state'], axis=1))
    datafnm = 'data/%s_all_rst.npz' % env_name
    figfnm = 'gallery/%s_rollout_xf.pdf' % env_name
    figfnm_min = 'gallery/%s_rollout_min_x.pdf' % env_name
    if args.small:
        datafnm = datafnm.replace('.npz', '_small.npz')
        figfnm = figfnm.replace('.pdf', '_small.pdf')
        figfnm_min = figfnm_min.replace('.pdf', '_small.pdf')
    if args.medium:
        datafnm = datafnm.replace('.npz', '_medium.npz')
        figfnm = figfnm.replace('.pdf', '_medium.pdf')
        figfnm_min = figfnm_min.replace('.pdf', '_medium.pdf')
    if args.medhard:
        datafnm = datafnm.replace('.npz', '_medhard.npz')
        figfnm = figfnm.replace('.pdf', '_medhard.pdf')
        figfnm_min = figfnm_min.replace('.pdf', '_medhard.pdf')
    if args.valid:
        datafnm = datafnm.replace('.npz', '_valid.npz')
        figfnm = figfnm.replace('.pdf', '_valid.pdf')
        figfnm_min = figfnm_min.replace('.pdf', '_valid.pdf')
    for level_ in level:
        print('min level %f count %d' %
              (level_, np.sum(v_min_state_norm < level_)))
    np.savez(datafnm, x0=v_x0, xf=v_xf, traj=v_traj)
    fig, ax = plt.subplots()
    ax.hist(v_xf_norm, bins='auto')
    ax.set_xlabel(r'$\|x_f\|$')
    ax.set_ylabel('Count')
    fig.savefig(figfnm)
    fig, ax = plt.subplots()
    ax.hist(v_min_state_norm, bins='auto')
    ax.set_xlabel(r'$\|x\|_{\min}$')
    ax.set_ylabel('Count')
    fig.savefig(figfnm_min)
    plt.show()