from practical_2.train import train_model ### For reproducibility. prepare() train_dataset = TreeDataset("trees/train.txt") eval_testset = TreeDataset("trees/dev.txt") ### Now we need to set the tranformation function model = create_attention_classifier() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) v = model.vocab transform = lambda example: prepare_example(example, v) train_dataset.transform = transform eval_testset.transform = transform train_dataloader = DataLoader(train_dataset, batch_size=512, collate_fn=pad_batch) eval_dataloader = DataLoader(eval_testset, batch_size=512, collate_fn=pad_batch) optimizer = Adam(model.parameters()) eval_callback = ListCallback([ AccuracyCallback() ]) history = train_model(model, optimizer, train_dataloader, eval_dataloader, eval_callback=eval_callback, n_epochs=150, eval_every=5)
from practical_2.models.BOW import * from torch.optim import * from practical_2.callbacks.callbacks import * from practical_2.models.CBOW import create_cbow_model from practical_2.prepare import prepare from practical_2.utils import * from practical_2.train import train_model ### For reproducibility. prepare() train_dataset = TreeDataset("trees/train.txt") eval_testset = TreeDataset("trees/dev.txt") ### Now we need to set the tranformation function transform = lambda example: prepare_example(example, train_dataset.v) train_dataset.transform = transform eval_testset.transform = transform collate_fn = lambda x: pad_batch(x, v) train_dataloader = DataLoader(train_dataset, batch_size=128, collate_fn=collate_fn) eval_dataloader = DataLoader(eval_testset, batch_size=128, collate_fn=collate_fn) v = train_dataset.v model = create_cbow_model(v) optimizer = Adam(model.parameters(), lr=0.0005) eval_callback = ListCallback([ AccuracyCallback()
from practical_2.models.DeepCBOW import create_deep_cbow_model, zero_init_function, create_glove_deep_cbow_model, \ create_w2v_deep_cbow_model from practical_2.prepare import prepare from practical_2.utils import * from practical_2.train import train_model ### For reproducibility. prepare() train_dataset = TreeDataset("trees/train.txt") eval_testset = TreeDataset("trees/dev.txt") model = create_w2v_deep_cbow_model() ### Now we need to set the tranformation function transform = lambda example: prepare_example(example, model.vocab) train_dataset.transform = transform eval_testset.transform = transform train_dataloader = DataLoader(train_dataset, batch_size=128, collate_fn=pad_batch) eval_dataloader = DataLoader(eval_testset, batch_size=128, collate_fn=pad_batch) optimizer = Adam(model.parameters(), lr=0.0005) eval_callback = ListCallback([AccuracyCallback()])