Example #1
0
def f3(korr=False):
    i = len(data)-3
    x = np.arange(0, (len(data[i]))*10, 10)
    y = np.array(data[i])
    ey = np.ones(len(x))*e_s
    ex = np.ones(len(x))*e_m
    ax1, ax2, a,ea,b,eb,chiq,corr = bib.pltmitres(x,y,ey, ex=ex,yeinheit="mm", xl="m", yl="s", regData=True, title="kalib3")
    
    #Korrektur?
    if korr:
        deltas = []
        for j in range(len(x)-1):
            deltas.append((y[j+1]-y[j]))
        deltas = np.array(deltas)
        
        #1. Fall: Nehme +0.07 als 10 an
        ax1, ax2, a,ea,b,eb,chiq,corr = bib.pltmitres(x[:-1],deltas,ey[:-1],yeinheit="mm", xl="m", yl="δ", regData=True)
        korrektur = np.round((deltas-0.07)/0.01)
        korrektur = np.append(np.zeros(1), korrektur)
        
        x2=np.array(x)
        
        for j in range(len(korrektur)):
            for k in range(j,len(x2)):
                x2[k] = x2[k]+korrektur[j]
        
        ax1, ax2, a,ea,b,eb,chiq,corr=bib.pltmitres(x2,y,ey,yeinheit="mm", xl="m", yl="s", regData=True)
    print("a=", a)
    k=l/(2*a)
    k*=10**-9 * 10**3
    ek = l*0.5*ea/a**2 * 10**-9 * 10**3
    print("k=", k)
    print("ek=", ek)
    print("ek/k", ek/k)
    return k, ek
Example #2
0
def f12(korr=False):
    i = len(data) - 1
    #N=20
    N = 0
    x = np.arange(10 * N, (N + len(data[i][N:])) * 10, 10)  #12
    y1 = np.array(data[i][N:])  #12

    i = len(data) - 2
    y2 = np.array(data[i][N:])  #12
    y = 0.5 * (y1 + y2)
    ey = np.ones(len(y)) * e_s
    ex = np.ones(len(y)) * e_m

    ax1, ax2, a, ea, b, eb, chiq, corr = bib.pltmitres(x,
                                                       y,
                                                       ey,
                                                       ex=ex,
                                                       yeinheit="mm",
                                                       xl="m",
                                                       yl="s",
                                                       regData=True,
                                                       title="kalib12")

    print("a=", a)
    k = l / (2 * a)
    k *= 10**-9 * 10**3
    ek = l * 0.5 * ea / a**2 * 10**-9 * 10**3
    print("k=", k)
    print("ek=", ek)
    print("ek/k", ek / k)
    return k, ek
Example #3
0
def kalib_2():
    i = len(data) - 2
    intervalle = [0, 60, 100, 200, 300]

    K = []
    eK = []
    for I in range(len(intervalle) - 1):
        j = int(intervalle[I] / 10)
        k = int(intervalle[I + 1] / 10)
        x = np.arange(intervalle[I], (j + len(data[i][j:k])) * 10, 10)  #12
        y = np.array(data[i][j:k])  #12
        ey = np.ones(len(x)) * e_s
        ex = np.ones(len(x)) * e_m

        ax1, ax2, a, ea, b, eb, chiq, corr = bib.pltmitres(x,
                                                           y,
                                                           ey,
                                                           ex=ex,
                                                           yeinheit="mm",
                                                           xl="m",
                                                           yl="s",
                                                           regData=True,
                                                           title="kalib2")

        print("a=", a)
        k = l / (2 * a)
        k *= 10**-9 * 10**3
        ek = l * 0.5 * ea / a**2 * 10**-9 * 10**3
        print("k=", k)
        print("ek=", ek)
        print("ek/k", ek / k)
        K.append(k)
        eK.append(ek)
    return np.array(K), np.array(eK)
Example #4
0
def f2(korr=False):
    i = len(data) - 2
    x = np.arange(0, (0 + len(data[i][0:])) * 10, 10)  #12
    y = np.array(data[i][0:])  #12
    ey = np.ones(len(x)) * e_s
    ex = np.ones(len(x)) * e_m
    ax1, ax2, a, ea, b, eb, chiq, corr = bib.pltmitres(x,
                                                       y,
                                                       ey,
                                                       ex=ex,
                                                       yeinheit="mm",
                                                       xl="m",
                                                       yl="s",
                                                       regData=True,
                                                       title="kalib2")

    print("a=", a)
    k = l / (2 * a)
    k *= 10**-9 * 10**3
    ek = l * 0.5 * ea / a**2 * 10**-9 * 10**3
    print("k=", k)
    print("ek=", ek)
    print("ek/k", ek / k)
    return k, ek
Example #5
0
for line in file:
    d = np.array(line.split(" "))
    data.append(d.astype(np.float))
data = np.array(data)

for i in range(1, len(data)):
    if i != 2:
        s = data[i][:]  #13:
        m = np.arange(0, len(s) * 10, 10)  #13
        delta, edelta_sys, edelta = stodelta(s, np.ones(len(s)) * e_s)
        em = np.ones(len(delta)) * e_m
        ax1, ax2, a, ea, b, eb, chiq, corr = bib.pltmitres(m,
                                                           delta,
                                                           edelta,
                                                           ex=em,
                                                           xl="m",
                                                           yl="mm",
                                                           regData=True,
                                                           title="grun" +
                                                           str(i))
        print("lambda", i, "=", 2 * a * 10**6)
        print("e_lambda", i, "=", 2 * ea * 10**6)
        #Verschiebemethode
        ap, eap, bp, ebp, chiq, corr = anal.lineare_regression_xy(
            m + e_m, delta + edelta_sys, em, edelta)
        am, eam, bm, ebm, chiq, corr = anal.lineare_regression_xy(
            m - e_m, delta - edelta_sys, em, edelta)
        e_l_sys = np.max((np.abs(a - ap), np.abs(a - am))) * 2 * 10**6
        print("e_lambda_sys", i, "=", e_l_sys)

    else:
Example #6
0
sigma_winkel1 = np.array(sigma_winkel1)
sigma_winkel2 = np.array(sigma_winkel2)
sigma_winkel = np.array(np.sqrt(sigma_winkel1**2 + sigma_winkel2**2))

dmin = np.array(dmin)
e_dmin = sigma_winkel / 2

n = np.sin(bib.DegToRad(dmin + e) * 0.5) / np.sin(bib.DegToRad(e / 2))
e_n = (np.cos(bib.DegToRad(dmin + e) * 0.5) /
       np.sin(bib.DegToRad(e / 2))) * 0.5 * bib.DegToRad(e_dmin)

ax1, ax2, c, ec, d, ed, chiq, corr = bib.pltmitres(lambdas**-2,
                                                   n,
                                                   e_n,
                                                   yl="n",
                                                   xl="$\lambda$",
                                                   xeinheit="$nm^{-2}$",
                                                   ratios=[4, 1],
                                                   regData=True,
                                                   markersize=10)
ax1.set_ylim(top=1.9)
p, cov = curve_fit(lton, lambdas**-2, n, sigma=e_n)
a = np.arange(
    min(lambdas**-2) * 0.95,
    max(lambdas**-2) * 1.05,
    max(lambdas**-2) * 0.01)
b = lton(a, *p)
#ax1.plot(a,b, color="b", label="fit")
#ax2.plot(a,b-c*a-d, color="b")
plt.show()
plt.close()
Example #7
0
                     (R * C))**2) * eC**2 / 4)
    return eQ_1


x = R_1  #R**-1
ex = eR_1
y = np.array([R_L * np.sqrt(C / L)])  #Q**-1
y = np.append(y, Q_p(R_1[1:]**-1)**-1)
ey = np.array([
    y[0] * np.sqrt((eR_L / R_L)**2 + 0.25 * (eC / C)**2 + 0.25 * (eL / L)**2)
])
ey = np.append(ey, eQ_p_1(R_o, eR_o))
ax1, ax2, a, ea, b, eb, chiq, corr = bib.pltmitres(x,
                                                   y,
                                                   ey,
                                                   ex,
                                                   regData=True,
                                                   xl="$R^{-1} [\Omega^{-1}]$",
                                                   yl="$Q^{-1}$")
ax1.legend(
    title=
    "Lineare Regression\n{} = ({:.6f} ± {:.6f}){} $\cdot$ {}+({:.6f}±{:.6f}){}"
    .format("$Q^{-1}$", a, ea, "/$\Omega^{-1}$", "$R^{-1}$", b, eb, "", loc=1))
ax1.set_ylim(top=1.5)
plt.show()
plt.close()
print("Aus den Messgrößen erhält man:")
for i in range(len(x)):
    print("Q=", y[i]**-1, "+-", ey[i] * y[i]**-2, "für R^-1=", R_1[i])

#Plot der LSG:
Example #8
0
import numpy as np
import praktikum_addons.bib as bib
import matplotlib.pyplot as plt

x, y = bib.c_open("../WegaufKal3.lab", ["R_B1", "s"])
ex = np.ones(len(x)) * 0.005
ey = np.ones(len(y)) * 0.1 / np.sqrt(12)
ax1, ax2 = bib.pltmitres(x,
                         y,
                         ex,
                         ey,
                         yl="s",
                         xl="R",
                         yeinheit="cm",
                         xeinheit="$k\Omega$",
                         ratios=[5, 1])
ax1.set_ylim(top=120)
plt.show()