def test_data_identifiers(self):
     pp = pre_processor.PreProcessor(whitelist=['Brazil'],
                                     data_identifiers=['new_cases'])
     data = pp.pre_process()
     len_data = len(data['Brazil'])
     assert len_data == 1
     pp = pre_processor.PreProcessor(whitelist=['Brazil'])
     data = pp.pre_process(['new_cases'])
     len_data = len(data['Brazil'])
     assert len_data == 1
Example #2
0
 def __init__(self, dataset=None, identifier=None):
     self.defaults()
     if dataset == None:
         pp = pre_processor.PreProcessor(self.file)
         self.dataset = pp.pre_process()
     else:
         self.dataset = dataset
Example #3
0
eventFileReady = threading.Event()
event_ticker_timeout = threading.Event()

# Create a Ticker instance
tick_obj = ticker.Ticker(tick_event=eventGoGetData,
                         dt=dt,
                         timeout=timeOut,
                         tick_timeout_event=event_ticker_timeout)

# Creates an AcquisitionSystem instance
ASys = acquisition.AcquisitionSystem(sampling_funcs=samplingFunctions,
                                     maxRowsPerFile=maxCacheSize,
                                     channel_names=ch_names)

# Creates a PreProcessor instance
PrePross = pre_processor.PreProcessor(pre_process_func, channel_names=ch_names)

# Create a Watchdog instance
Watchdog = watchdog.Watchdog(ASys, PrePross, tick_obj, event_ticker_timeout)

# Define threads
ticker_thread = threading.Thread(name='Ticker', target=tick_obj.run)

Acq_thread = threading.Thread(name='Acquisition',
                              target=ASys.run,
                              args=(eventGoGetData, eventFileReady,
                                    event_ticker_timeout),
                              kwargs={'verbose': True})

PreProcess_thread = threading.Thread(name='Pre-Processor',
                                     target=PrePross.run,
class FrameSeperator(object):
    """This class do the separating video into frames"""
    # create the object of pre_processor module
    pre_processor_obj = pre_processor.PreProcessor()
    # create object of frame detail operation class(not the output dict)
    ops_obj = ops.DictOps()
    # create the object of the output dict
    output_ops_obj = output_ops.OutputDictOps()

    # constructor
    def __init__(self):
        pass

    def catch_video(self, video_location):
        """first method get call from GUI"""
        # change the progress bar values
        container.component[1]['value'] = 10
        container.component[0].update_idletasks()
        # get the video
        cap = cv2.VideoCapture(video_location)
        # get frame rate
        # fps = cap.get(cv2.CAP_PROP_FPS)
        # method call
        self.seperator(cap)

    # method
    def seperator(self, cap):
        """This method do separation task"""
        if not cap.isOpened():
            print('ERROR FILE NOT FOUND OR WRONG CODEC USED!')
        # get first frame of the video as 1
        frame_position = 1

        while cap.isOpened():
            ret, frame = cap.read()

            if ret:
                # get timestamp of current frame
                time_stamp = cap.get(cv2.CAP_PROP_POS_MSEC) / 1000
                # sent frame to pre-processing
                self.pre_processor_obj.pre_processing(frame, frame_position,
                                                      time_stamp)
                # track frame position
                frame_position += 1
                # condition for hard stop the separating to frames
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                # method call - to print just frame details(not output dict)
                self.iterate_different_frame_timestamp()
                print("################################################")
                # get frame info to variable
                output_visual_info = self.ops_obj.get_visual_info()
                # pass frame details to creat output visual info dict
                visual_output = self.output_ops_obj.create_dict(
                    output_visual_info)
                print(
                    "-----------------------Write To Doc-------------------------"
                )
                doc_ops.write_to_doc_method(visual_output)
                print(
                    "-----------------------Write To Doc-------------------------"
                )
                # change the progress bar values
                container.component[1]['value'] = 50
                container.component[0].update_idletasks()
                break
        cap.release()

    # method
    def iterate_different_frame_timestamp(self):
        """Iterate selected frame's details"""
        # method call - to print just frame details(not output dict)
        self.ops_obj.view_dict()
 def test_whitelist(self):
     pp = pre_processor.PreProcessor(whitelist=['Brazil'])
     data = pp.pre_process()
     len_data = len(data)
     assert len_data == 1
 def test_blacklist(self):
     pp = pre_processor.PreProcessor(blacklist=['Brazil'])
     data = pp.pre_process()
     assert 'Brazil' not in data.keys()
Example #7
0
        #print(self.Pi, self.ki, self.x0, self.sigma_Pi, self.sigma_ki, self.sigma_x0)

    def plot_prediction(self):
        plt.clf()
        future_dates = range(
            len(self.X) + self.future_prediction - self.add_future_days)
        plt.scatter(self.X[:len(self.X) - self.add_future_days],
                    self.y[:len(self.X) - self.add_future_days],
                    label=self.identifier)
        y_pred = self.model(future_dates, self.Pi, self.ki, self.x0)
        upper_lim = [
            self.model(i, self.Pi + self.sigma_Pi, self.ki, self.x0)
            for i in future_dates
        ]
        lower_lim = [
            self.model(i, self.Pi - self.sigma_Pi, self.ki, self.x0)
            for i in future_dates
        ]
        plt.plot(future_dates, y_pred)
        plt.fill_between(future_dates, lower_lim, upper_lim, alpha=0.4)
        plt.legend()
        plt.show()


if (__name__ == "__main__"):
    total_regressor = TotalLogisticRegressor()
    pp = pre_processor.PreProcessor(total_regressor.file, filter_date=True)
    total_regressor.dataset = pp.pre_process()
    total_regressor.identifier = 'total_deaths'
    total_regressor.run()
    total_regressor.plot_prediction()
import pre_processor as pp
#import oneVSAllSVM as OVA
#import oneVSOneSVM as OVO

# import oneVSAllSVM as OVA
# import oneVSOne as OVO

processor = pp.PreProcessor()
processor.condense()
processor.extract_stats()
processor.condense_3d(60)
# ova = OVA.OneVSAllSVM()
# ova.run()
#
# ovo = OVO.OneVSOneSVM()
# ovo.run()
#
#
#
#