Example #1
0
def main(model_path, img_folder, save_path, gpu_id):
    if os.path.exists(save_path):
        shutil.rmtree(save_path, ignore_errors=True)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    save_img_folder = os.path.join(save_path, 'img')
    if not os.path.exists(save_img_folder):
        os.makedirs(save_img_folder)
    save_txt_folder = os.path.join(save_path, 'result')
    if not os.path.exists(save_txt_folder):
        os.makedirs(save_txt_folder)
    img_paths = [os.path.join(img_folder, x) for x in os.listdir(img_folder)]
    model = Pytorch_model(model_path, gpu_id=gpu_id)
    total_frame = 0.0
    total_time = 0.0
    for img_path in tqdm(img_paths):
        img_name = os.path.basename(img_path).split('.')[0]
        save_name = os.path.join(save_txt_folder, 'res_' + img_name + '.txt')
        _, boxes_list, t = model.predict(img_path)
        total_frame += 1
        total_time += t
        img = draw_bbox(img_path, boxes_list, color=(0, 0, 255))
        cv2.imwrite(os.path.join(save_img_folder, '{}.jpg'.format(img_name)), img)
        np.savetxt(save_name, boxes_list.reshape(-1, 8), delimiter=',', fmt='%d')
    print('fps:{}'.format(total_frame / total_time))
    return save_txt_folder
Example #2
0
def main(model_path, img_folder, save_path, gpu_id):
    if os.path.exists(save_path):
        shutil.rmtree(save_path, ignore_errors=True)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    save_img_folder = os.path.join(save_path, 'img')
    if not os.path.exists(save_img_folder):
        os.makedirs(save_img_folder)
    save_txt_folder = os.path.join(save_path, 'result')
    if not os.path.exists(save_txt_folder):
        os.makedirs(save_txt_folder)
    img_paths = [os.path.join(img_folder, x) for x in os.listdir(img_folder)]
    model = Pytorch_model(model_path, gpu_id=gpu_id)
    total_frame = 0.0
    total_time = 0.0
    for img_path in tqdm(img_paths):
        img_name = os.path.basename(img_path).split('.')[0]
        save_name = os.path.join(save_txt_folder, 'res_' + img_name + '.txt')
        _, boxes_list, t = model.predict(img_path, short_size=640)
        total_frame += 1
        total_time += t
        #img = draw_bbox(img_path, boxes_list, color=(0, 0, 255))
        #cv2.imwrite(os.path.join(save_img_folder, '{}.jpg'.format(img_name)), img)
        file_writer = open(save_name, 'w', encoding='utf-8')
        for box in boxes_list:
            line = ','.join(list(map(str, box))) + '\n'
            file_writer.write(line)
        file_writer.close()
        #np.savetxt(save_name, boxes_list.reshape(-1, 8), delimiter=',', fmt='%d')
    print('fps:{}'.format(total_frame / total_time))
    return save_txt_folder
Example #3
0
def main(model_path, path, save_path, gpu_id):
    if os.path.exists(save_path):
        shutil.rmtree(save_path, ignore_errors=True)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    img_paths = [os.path.join(path, x) for x in os.listdir(path)]
    net = PSENet(backbone='resnet152', pretrained=False, result_num=config.n)
    model = Pytorch_model(model_path, net=net, scale=1, gpu_id=gpu_id)
    pbar = tqdm(total=len(img_paths))
    for img_path in img_paths:
        img_name = os.path.basename(img_path).split('.')[0]
        save_name = os.path.join(save_path, 'res_' + img_name + '.txt')
        _, preds = model.predict(img_path)
        np.savetxt(save_name, preds.reshape(-1, 8), delimiter=',', fmt='%d')
        pbar.update(1)
    pbar.close()
Example #4
0
def main(model_path, backbone, scale, path, save_path, gpu_id):
    device = torch.device("cuda:" + str(gpu_id))
    logger = setup_logger(os.path.join(config.output_dir, 'test_log'))
    logger.info(config.print())
    if os.path.exists(save_path):
        shutil.rmtree(save_path, ignore_errors=True)
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    save_img_folder = os.path.join(save_path, 'img')
    if not os.path.exists(save_img_folder):
        os.makedirs(save_img_folder)
    save_txt_folder = os.path.join(save_path, 'result')
    if not os.path.exists(save_txt_folder):
        os.makedirs(save_txt_folder)
    img_paths = [os.path.join(path, x) for x in os.listdir(path)]
    net = PSENet(backbone=backbone,
                 pretrained=config.pretrained,
                 result_num=config.n)
    model = Pytorch_model(model_path, net=net, scale=scale, gpu_id=gpu_id)
    num_gpus = torch.cuda.device_count()
    if num_gpus > 1:
        model = nn.DataParallel(model)
    model = model.to(device)
    model = nn.DataParallel(model)
    recall, precision, f1 = merge_eval(model=model,
                                       save_path=os.path.join(
                                           config.output_dir, 'output'),
                                       test_path=config.testroot,
                                       device=device,
                                       base_path=config.base_path,
                                       use_sub=config.use_sub)
    logger.info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(
        recall, precision, f1))

    # total_frame = 0.0
    # total_time = 0.0
    # for img_path in tqdm(img_paths):
    #     img_name = os.path.basename(img_path).split('.')[0]
    #     save_name = os.path.join(save_txt_folder, 'res_' + img_name + '.txt')
    #     _, boxes_list, t = model.predict(img_path)
    #     total_frame += 1
    #     total_time += t
    #     # img = draw_bbox(img_path, boxes_list, color=(0, 0, 255))
    #     # cv2.imwrite(os.path.join(save_img_folder, '{}.jpg'.format(img_name)), img)
    #     np.savetxt(save_name, boxes_list.reshape(-1, 8), delimiter=',', fmt='%d')
    # print('fps:{}'.format(total_frame / total_time))
    return save_txt_folder