Example #1
0
class Reid_feature():
    def __init__(self):
        args = get_parser().parse_args()
        cfg = setup_cfg(args)
        self.demo = FeatureExtractionDemo(cfg, parallel=args.parallel)

    def __call__(self, img_list):
        t1 = time.time()
        feat = self.demo.run_on_batch(img_list)
        # print('reid time:', time.time() - t1, len(img_list))
        return feat
Example #2
0
        #     args.input = glob.glob(os.path.expanduser(args.input[0]))
        #     assert args.input, "The input path(s) was not found"
        # for path in tqdm.tqdm(os.listdir(args.input)):
            t1 = time.time()
            img = cv2.imread(args.input)
            im = img[:, :, ::-1]  # reid 前处理
            im = cv2.resize(im, (128, 256), interpolation=cv2.INTER_CUBIC)
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            img_list.append(torch.as_tensor(im.astype("float32").transpose(2, 0, 1))[None])
            # img_list.append(img)


            # feat = demo.run_on_image(img)
            # print(img_list[0].shape)
            feat = demo.run_on_batch(img_list)
            print('pytorch time:', time.time() - t1)
            pytorch_output = feat.numpy()
            # print(pytorch_output.shape)
            # sim = np.dot(pytorch_output, onnx_output.transpose())
            # print('====sim:', sim)

        # np.testing.assert_allclose(pytorch_output, onnx_output, rtol=1e-4, atol=1e-6)
        # print("恭喜你 ^^ ,onnx 和 pytorch 结果一致 , Exported model has been executed decimal=5 and the result looks good!")

        # np.save(os.path.join(args.output, path.replace('.jpg', '.npy').split('/')[-1]), feat)