from predictor import ScoringService as ss if __name__ == '__main__': print('Model Load:', ss.get_model()) print(ss.predict(ss.get_inputs(), '2020-12-30'))
Do not include other categories in the prediction you will make. - If you do not want to make any prediction in some frames, just write "prediction = {}" in the prediction of the frame in the sequence(in line 65 or line 67). """ #評価用の動画データをNo.0〜順番に読み込み test_data_path = '../data' videos = sorted(glob.glob(test_data_path + '/*.mp4')) # 検出したBounding Boxの座標を出力する # Output = [name_label, BoxA_X_min, BoxA_X_max, BoxA_Y_min, BoxA_Y_max] Output_list = '' for i in range(len(videos)): video_path = videos[i] ScoringService.get_model() Output = ScoringService.predict(video_path) print(Output) if i == 0: #最初はキーを指定して辞書作成 Output_list = Output else: #2個目以降はキーを指定して辞書追加 Output_list.update(Output) print("**************************") # Output douga mp4 #ScoringService.get_model() #ScoringService.pw_outdouga(video_path) with open('../output/prediction.json', 'w') as f:
# The video file on which we want to perform inference (object detection and tracking) is passed as file path parameter to the predict function. # The results are returned in json format consisting of class predictions and assigned ids for each frame. # Multiple videos are passed by looping over the predict function and the results are aggregated into one json file. # Released under Apache License 2.0 # Email: [email protected] # ----------------------------------------------------------- import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import pdb import json import time from predictor import ScoringService exp_name = "flip_lr.aspect." if ScoringService.get_model(): start_time = time.time() target_videos = [ "train_00", "train_01", "train_02", "train_12", "train_16", "train_22" ] # target_videos = ["train_{:02d}".format(i) for i in range(0,25)] combined_prediction_json = {} print("Processing videos = {}".format(target_videos)) for train_file in target_videos: start_time_train = time.time() print("Train_file = {}".format(train_file)) preds_json = ScoringService.predict( "/ext/signate_edge_ai/train_videos/{}.mp4".format(train_file)) with open(exp_name + '{}.preds.json'.format(train_file), 'w+') as output_json_file:
from predictor import ScoringService as cls # データセットをダウンロードして解凍したファイルを配置した場所を定義します。 # データ保存先ディレクトリ DATASET_DIR= "../../data_dir" # 読み込むファイルを定義します。 inputs = cls.get_inputs(DATASET_DIR) print(inputs) cls.train_and_save_model(inputs, model_path="model")
- The categories for testing are "Car" and "Pedestrian". Do not include other categories in the prediction you will make. - If you do not want to make any prediction in some frames, just write "prediction = {}" in the prediction of the frame in the sequence(in line 65 or line 67). """ data_path = '../data'#読みこむデータのパスを記載 #複数のファイルに対応済み videos = glob.glob(data_path+'/*.mp4') Output_list = '' for i in range(len(videos)): video_path = videos[i] ScoringService.get_model() #Output = ScoringService.predict(video_path) #print(Output) #if i == 0:#最初はキーを指定して辞書作成 # Output_list = Output #else:#2個目以降はキーを指定して辞書追加 # Output_list.update(Output) print("**************************") # Output douga mp4 #ScoringService.get_model() ScoringService.pw_outdouga(video_path) #with open('../output/prediction.json', 'w') as f: