Example #1
0
 def predict(self, X):
     '''
     This function should provide predictions of labels on (test) data.
     Here we just return zeros...
     Make sure that the predicted values are in the correct format for the scoring
     metric. For example, binary classification problems often expect predictions
     in the form of a discriminant value (if the area under the ROC curve it the metric)
     rather that predictions of the class labels themselves. For multi-class or multi-labels
     problems, class probabilities are often expected if the metric is cross-entropy.
     Scikit-learn also has a function predict-proba, we do not require it.
     The function predict eventually can return probabilities.
     '''
     Prepro = Preprocessor()
     Prepro.pip0(10)
     Prepro.fit_transform(X,y=None)
     
     num_test_samples = len(X)
     if X.ndim>1: num_feat = len(X[0])
     print("PREDICT: dim(X)= [{:d}, {:d}]".format(num_test_samples, num_feat))
     if (self.num_feat != num_feat):
         print("ARRGH: number of features in X does not match training data!")
     print("PREDICT: dim(y)= [{:d}, {:d}]".format(num_test_samples, self.num_labels))
     output= self.clf.predict(X)
     
     return output
Example #2
0
    def fit(self, X, y):
        '''
        This function should train the model parameters.
        Here we do nothing in this example...
        Args:
            X: Training data matrix of dim num_train_samples * num_feat.
            y: Training label matrix of dim num_train_samples * num_labels.
        Both inputs are numpy arrays.
        For classification, labels could be either numbers 0, 1, ... c-1 for c classe
        or one-hot encoded vector of zeros, with a 1 at the kth position for class k.
        The AutoML format support on-hot encoding, which also works for multi-labels problems.
        Use data_converter.convert_to_num() to convert to the category number format.
        For regression, labels are continuous values.
        '''
        Prepro = Preprocessor()
        Prepro.pip0(10)
        Prepro.fit_transform(X, y)
        
        
        self.num_train_samples = len(X)
        if X.ndim>1: self.num_feat = len(X[0])
        print("FIT: dim(X)= [{:d}, {:d}]".format(self.num_train_samples, self.num_feat))
        num_train_samples = len(y)
        if y.ndim>1: self.num_labels = len(y[0])
        print("FIT: dim(y)= [{:d}, {:d}]".format(num_train_samples, self.num_labels))
        if (self.num_train_samples != num_train_samples):
            print("ARRGH: number of samples in X and y do not match!")

        ###### Baseline models ######
        from sklearn.naive_bayes import GaussianNB
        from sklearn.linear_model import LinearRegression
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR
        # Comment and uncomment right lines in the following to choose the model
        #self.clf = GaussianNB()
        #self.clf = LinearRegression()
        #self.clf = DecisionTreeRegressor()
        #self.clf = RandomForestRegressor()
        #self.clf = KNeighborsRegressor()
        #self.clf = SVR(C=1.0, epsilon=0.2)
        if self.is_trained==False:
            self.clf=self.selection_hyperparam(X, y)
          #  self.clf=self.selection_hyperparam__(X, y)
             
          
        
        
        self.is_trained=True
Example #3
0
path.append("../ingestion_program")  # Contains libraries you will need
from data_manager import DataManager  # such as DataManager

from prepro import Preprocessor
input_dir = "../sample_data"
output_dir = "../resuts"

basename = 'credit'
D = DataManager(basename, input_dir)  # Load data
print("*** Original data ***")
print D

Prepro = Preprocessor()

# Preprocess on the data and load it back into D
D.data['X_train'] = Prepro.fit_transform(D.data['X_train'], D.data['Y_train'])
D.data['X_valid'] = Prepro.transform(D.data['X_valid'])
D.data['X_test'] = Prepro.transform(D.data['X_test'])

# Here show something that proves that the preprocessing worked fine
print("*** Transformed data ***")
print D

# Preprocessing gives you opportunities of visualization:
# Scatter-plots of the 2 first principal components
# Scatter plots of pairs of features that are most relevant
import matplotlib.pyplot as plt
X = D.data['X_train']
Y = D.data['Y_train']
plt.scatter(X[:, 0], X[:, 1], c=Y)
plt.xlabel('PC1')
Example #4
0
class model:
    def __init__(self):
        '''
        This constructor is supposed to initialize data members.
        Use triple quotes for function documentation.
        '''
        self.debug = 0
        self.num_train_samples=0
        self.num_feat=1
        self.num_labels=1
        self.is_trained=False
        self.preproc = Preprocessor()
        
    def cross_validation_simple(self, j, k, X, Y):
        return cross_val_score(RandomForestRegressor(100, "mse", None, 2, j, 0.0, k), X, Y, cv=3)
    
    # Recherche des meilleurs paramètres à donner à RandomForestRegressor.
    # A cause de la lenteur de cette méthode, nous l'avons utilisée dans model_param.py, et nous
    # avons directement donné les paramètres optimaux à Random Forest, qui s'avèrent être les paramètres de base.
    def selection_hyperparam(self, X, Y):
        SMax=0
        param=dict()
        tab=[0.3, 0.6, 0.9, 'auto']
        
        for j in range(1, 11, 1):
            for k in range(0, 4, 1):
                a=RandomForestRegressor(100, "mse", None, 2, j, 0.0, tab[k])
                a.fit(X, Y)
                error=self.cross_validation_simple(j, tab[k], X, Y)
                score=mean(error)
                print(" j: "+str(j)+" k :"+str(k))
                
                if(score>SMax):
                    SMax=score
                        
                    param={'param2':j, 'param3':tab[k]}
                    print('first param '+str(param['param2'])+' second param '+str(param['param3']))
        print('first param final '+str(param['param2'])+' second param final '+str(param['param3']))
        
        return param

    def fit(self, X, y):
        '''
        This function should train the model parameters.
        Here we do nothing in this example...
        Args:
            X: Training data matrix of dim num_train_samples * num_feat.
            y: Training label matrix of dim num_train_samples * num_labels.
        Both inputs are numpy arrays.
        For classification, labels could be either numbers 0, 1, ... c-1 for c classe
        or one-hot encoded vector of zeros, with a 1 at the kth position for class k.
        The AutoML format support on-hot encoding, which also works for multi-labels problems.
        Use data_converter.convert_to_num() to convert to the category number format.
        For regression, labels are continuous values.
        '''

        if self.debug:
        	self.num_train_samples = self.preproc.fit_transform(X).shape[0]
        	if self.preproc.fit_transform(X).ndim>1: self.num_feat = self.preproc.fit_transform(X).shape[1]
        	print("FIT: dim(X)= [{:d}, {:d}]").format(self.num_train_samples, self.num_feat)
        	num_train_samples = y.shape[0]
        	if y.ndim>1: self.num_labels = y.shape[1]
        	print("FIT: dim(y)= [{:d}, {:d}]").format(num_train_samples, self.num_labels)
        	if (self.num_train_samples != num_train_samples):
        		print("ARRGH: number of samples in X and y do not match!")

        ###### Baseline models ######
        from sklearn.naive_bayes import GaussianNB
        from sklearn.linear_model import LinearRegression
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.neighbors import KNeighborsRegressor
        # Comment and uncomment right lines in the following to choose the model
        #self.model = GaussianNB()
        #self.model = LinearRegression()
        #self.model = DecisionTreeRegressor()
        self.model = RandomForestRegressor()
        #self.model = KNeighborsRegressor()

        self.model.fit(self.preproc.fit_transform(X), y)
        self.is_trained=True

    def predict(self, X):
        '''
        This function should provide predictions of labels on (test) data.
       
        Make sure that the predicted values are in the correct format for the scoring
        metric. For example, binary classification problems often expect predictions
        in the form of a discriminant value (if the area under the ROC curve it the metric)
        rather that predictions of the class labels themselves. For multi-class or multi-labels
        problems, class probabilities are often expected if the metric is cross-entropy.
        Scikit-learn also has a function predict-proba, we do not require it.
        The function predict eventually can return probabilities.
        '''
        if self.debug:
        	num_test_samples = self.preproc.fit_transform(X).shape[0]
        	if self.preproc.fit_transform(X).ndim>1: num_feat = self.preproc.fit_transform(X).shape[1]
        	print("PREDICT: dim(X)= [{:d}, {:d}]").format(num_test_samples, num_feat)
        	if (self.num_feat != num_feat):
        		print("ARRGH: number of features in X does not match training data!")
        	print("PREDICT: dim(y)= [{:d}, {:d}]").format(num_test_samples, self.num_labels)
       
        y = self.model.predict(self.preproc.fit_transform(X))
        return y

    def save(self, path="./"):
        pickle.dump(self, open(path + '_model.pickle', "wb"))

    def load(self, path="./"):
        modelfile = path + '_model.pickle'
        if isfile(modelfile):
            with open(modelfile, "rb") as f:
                self = pickle.load(f)
            print("Model reloaded from: " + modelfile)
        return self
Example #5
0
                        help='file path for saved preprocessor')
    return parser.parse_args()


if __name__ == '__main__':
    # Get arguments
    print('Getting arguments...')
    args = get_args()

    # make a dataset
    print('Importing dataset...')
    data = SentimentDataset(data=args.train_path)

    # preprocess and save word encodings
    preprocessor = Preprocessor(max_vocab=args.max_vocab)
    data = preprocessor.fit_transform(dataset=data)
    preprocessor.save(args.prepro_save_path)

    # validation split
    data.split_data(validation_count=args.validation_count)
    train_ds, val_ds = data.to_dataset()

    # to dataLoaders
    train_set = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True)
    val_set = DataLoader(val_ds, batch_size=args.batch_size, shuffle=False)

    print('Initializing model...')
    mod = SentimentModel(
        len(preprocessor.vocab2enc) + 3, args.embedding_dim, args.hidden_dim)
    opt = Adam(mod.parameters(), lr=args.lr)