def multicode(reader):
    #reader - [fname, contents]
    preproc_data = []
    result = []
    flag = 0
    x = len(reader)
    for i in range(x):
        data = preproc.preprocess(reader[i])
        preproc_data.append(data)

    combinations = list(itertools.combinations(preproc_data, 2))
    for combo in combinations:
        result.append(preproc.check(combo))
    sim_result = ""
    for i in range(len(result)):
        if result[i] == True:
            flag = 1
            sim_result += "</br><b>Suspicious programs:</b> <i>%s %s</i>" % (
                combinations[i][0][3], combinations[i][1][3])
            tok1 = preproc.replace_tokens(combinations[i][0][0])
            tok2 = preproc.replace_tokens(combinations[i][1][0])
            p1, p2 = greedy_string_tiling(tok1, tok2)
            sim_result += "</br><b>%d%s</b> of %s found similar to %s" % (
                p1, "%", combinations[i][0][3], combinations[i][1][3])
            sim_result += "</br><b>%d%s</b> of %s found similar to %s</br>" % (
                p2, "%", combinations[i][1][3], combinations[i][0][3])

    if flag == 0:
        sim_result += "</br>Nothing suspicious found..."
    sim_result += "</p>"
    return sim_result
def preprocessLMDBDist(number):
    print('Starting with', number, 'th chunk')
    numTxt = ('0' if number < 10 else '') + str(number)
    envOri = lmdb.open(LMDB_ROOT_PATH + '\\dist' + numTxt, readonly=True)
    envPreproc = lmdb.open(LMDB_ROOT_PATH + '\\proc' + numTxt, map_size=map_size)

    datumOri = caffe.proto.caffe_pb2.Datum()
    datumPreproc = caffe.proto.caffe_pb2.Datum()
    datumPreproc.channels = 5
    datumPreproc.height = RESOLUTION
    datumPreproc.width = RESOLUTION

    curKey = None
    count = 0
    while True:
        with envOri.begin() as txnOri:
            cursor = txnOri.cursor()
            if curKey: cursor.set_key(curKey)
            # read Ori datum
            buffer = []
            for i in range(BUF_SIZE):
                if not cursor.next(): break
                curKey = cursor.key()
                datumOri.ParseFromString(cursor.value())
                flat_x = np.fromstring(datumOri.data, dtype=np.uint8)
                x = flat_x.reshape(datumOri.channels, datumOri.height, datumOri.width)
                datumPreproc.data = preprocess(x).tobytes()  # or .tostring() if numpy < 1.9
                datumPreproc.label = datumOri.label
                buffer.append((curKey, datumPreproc.SerializeToString()))
                count += 1
                if count % 100 == 0:
                    print(count, datumOri.label, 'done')
        if len(buffer) == 0: break

        with envPreproc.begin(write=True) as txnPreproc:
            txnPreproc.cursor().putmulti(buffer)
    print(number, 'th chunk done')
Example #3
0
        content = f.read()

        html = HTMLParser(content)
        if html.body is None:
            continue

        for tag in html.css('script'):
            tag.decompose()
        for tag in html.css('style'):
            tag.decompose()

        content = html.body.text(separator='\n')

        text = tokenize_text(content)
        content = preprocess(content)

        content, snippets = index_words(content, text)
        for word in content:
            num, i = content[word]

            cur.execute('INSERT OR IGNORE INTO IndexWord (word) VALUES (?);',
                        (word, ))

            post = (word, file_name, num, i)
            cur.execute('INSERT INTO Posting VALUES (?,?,?,?);', post)

        conn.commit()

        for index in snippets:
            snippet = snippets[index]
import time
import sqlite3
import re
from selectolax.parser import HTMLParser
from preproc import preprocess, tokenize_text  # importing custom package

if len(sys.argv) == 1:
    print("ERROR: no arguments.")
    exit(0)
elif len(sys.argv) > 2:
    print("ERROR: too much arguments.")
    exit(0)

q = sys.argv[1]

query = preprocess(q)
query = [word for i, word in query]

print("Connecting to database...")

conn = sqlite3.connect('inverted-index.db')

cur = conn.cursor()

s = '''
    SELECT p.documentName AS docName, SUM(frequency) AS freq, GROUP_CONCAT(indexes) AS idxs
    FROM Posting p
    WHERE
        p.word IN ({l})
    GROUP BY p.documentName
    ORDER BY freq DESC;
datumPreproc = caffe.proto.caffe_pb2.Datum()
datumPreproc.channels = 5
datumPreproc.height = RESOLUTION
datumPreproc.width = RESOLUTION

curKey = None
count = 0
while True:
    with envOri.begin() as txnOri:
        cursor = txnOri.cursor()
        if curKey: cursor.set_key(curKey)
        # read Ori datum
        buffer = []
        for i in range(BUF_SIZE):
            if not cursor.next(): break
            curKey = cursor.key()
            datumOri.ParseFromString(cursor.value())
            flat_x = np.fromstring(datumOri.data, dtype=np.uint8)
            x = flat_x.reshape(datumOri.channels, datumOri.height,
                               datumOri.width)
            datumPreproc.data = preprocess(
                x).tobytes()  # or .tostring() if numpy < 1.9
            datumPreproc.label = datumOri.label
            buffer.append((curKey, datumPreproc.SerializeToString()))
            count += 1
            if count % 100 == 0:
                print(count, datumOri.label, 'done')
    if len(buffer) == 0: break

    with envPreproc.begin(write=True) as txnPreproc:
        txnPreproc.cursor().putmulti(buffer)
Example #6
0
cfg.n_ensemble = 5

vec_idx_healthy = [1, 150]
vec_idx_dry_amd = [1, 150]
vec_idx_cnv = [1, 150]

vec_train_acc = []
vec_valid_acc = []
vec_test_acc = []

vec_y_true = []
vec_y_pred = []
vec_model = []

# Preprocessing
Xs, ys = preprocess(vec_idx_healthy, vec_idx_dry_amd, vec_idx_cnv, cfg)

for i in range(cfg.n_ensemble):

    print("\n\nIteration: {}".format(i + 1))
    model = get_model('arch_011', cfg)
    callbacks = get_callbacks(cfg)

    h = model.fit(Xs[0],
                  ys[0],
                  batch_size=cfg.batch_size,
                  epochs=cfg.n_epoch,
                  verbose=2,
                  callbacks=callbacks,
                  validation_data=(Xs[1], ys[1]),
                  shuffle=False,
Example #7
0
fp.close()

fooledCnt3ch = 0
fooledCnt5ch = 0
count = 0
bothlist = []

for imagePath, fname in allFiles(DATA_PATH):
    label = int(fname[9:].split('_')[0])
    if label > 200: continue

    # load image
    img = cv2.imread(imagePath)
    img = cv2.resize(img, (224, 224))
    img3ch = img.transpose((2, 0, 1))
    img5ch = preprocess(img3ch)

    # make batch
    batch3ch = np.zeros((NUM_IMAGE, *img3ch.shape)).astype(np.float32)
    batch5ch = np.zeros((NUM_IMAGE, *img5ch.shape)).astype(np.float32)
    batch3ch[0] = img3ch
    batch5ch[0] = img5ch

    # input, forward and get output
    net3ch.blobs['data'].data[...] = batch3ch
    net5ch.blobs['data'].data[...] = batch5ch
    out3ch = net3ch.forward()
    out5ch = net5ch.forward()
    probs3ch = out3ch['pool4'].reshape(1000)
    probs5ch = out5ch['pool4'].reshape(1000)
    answer3ch = probs3ch.argmax()
Example #8
0
def predict(img):
    model_xml = "C:\modeloptimizing\HTRModel.xml"
    model_bin = "C:\modeloptimizing\HTRModel.bin"
    ie = IECore()
    net = IENetwork(model=model_xml, weights=model_bin)
    input_blob = next(iter(net.inputs))
    n, c, h, w = net.inputs[input_blob].shape
    exec_net = ie.load_network(network=net, device_name="CPU")
    input_size = (1024, 128, 1)
    img = preprocess(img, input_size=input_size)
    img = normalization([img])
    img = np.squeeze(img, axis=3)
    img = np.expand_dims(img, axis=0)
    start = timer()
    print("Starting inference...")
    res = exec_net.infer(inputs={input_blob: img})
    end = timer()
    print("End inference time: ", 1000 * (end - start))
    output_data = res['dense/BiasAdd/Softmax']
    print(output_data)

    steps_done = 0
    steps = 1
    batch_size = int(np.ceil(len(output_data) / steps))
    input_length = len(max(output_data, key=len))
    predicts, probabilities = [], []

    while steps_done < steps:
        index = steps_done * batch_size
        until = index + batch_size

        x_test = np.asarray(output_data[index:until])
        x_test_len = np.asarray([input_length for _ in range(len(x_test))])

        decode, log = K.ctc_decode(x_test,
                                   x_test_len,
                                   greedy=False,
                                   beam_width=10,
                                   top_paths=3)
        probabilities.extend([np.exp(x) for x in log])
        decode = [[[int(p) for p in x if p != -1] for x in y] for y in decode]
        predicts.extend(np.swapaxes(decode, 0, 1))

        steps_done += 1

    for p in predicts:
        print(str(p))

    for pb in probabilities:
        print(str(pb))

    #interpretation of the data

    max_text_length = 128
    charset_base = string.printable[:95]
    tokenizer = Tokenizer(chars=charset_base, max_text_length=max_text_length)

    predicts = [[tokenizer.decode(x) for x in y] for y in predicts]

    print("\n####################################")
    for i, (pred, prob) in enumerate(zip(predicts, probabilities)):
        print("\nProb.  - Predict")
        for (pd, pb) in zip(pred, prob):
            print(f"{pb:.4f} - {pd}")
            if i == 0:
                pbperc = pb * 100
                pdfinal = pd
            i = 1 + i
    print("\n####################################")
    return pdfinal, pbperc
Example #9
0
		print 'Usage <file> <max-literals> [<max-number-of-properties>]'
		sys.exit(1)
	
	fn = args[0]
	num = int(args[1])
	num_generated = int(args[2]) if len(args) >= 3 else None
	
	# Parse model
	inf = open(fn, 'r')
	model = nusmv_yacc.parser.parse(inf.read())
	inf.close()
	(variable_dict, unprimed_vars, definition_vars),    \
			(definitions, transition_definitions),       \
			(initials, xinitials, transitions, invariants,\
			xinvariants, urgencies, resets, prop, xprop),  \
			orgspecs, clockmax = preproc.preprocess(model, True, False, 0, True, False, get_original_def_info=True)
		
	variables = []
	clocks = []
	for v, t in variable_dict.iteritems():
		if not v.endswith(preproc.PRIME_SUFFIX):
			if t == expressions.REAL:
				clocks.append(v)
			variables.append((v, t))
	
	for n, t in preproc.g_list_of_original_definitions.iteritems():
		if not v.endswith(preproc.PRIME_SUFFIX):
			if t == expressions.REAL:
				clocks.append(n)
			variables.append((n, t))
	
Example #10
0
#!/usr/bin/env python3

from vid_crop import crop
from frame_by_frame import write_frames
from preproc import preprocess
import sys

#write_frames(sys.argv[1])
preprocess()

Example #11
0
def sort_by_freq(e):
    doc, freq, snippet = e
    return freq


if len(sys.argv) == 1:
    print("ERROR: no arguments.")
    exit(0)
elif len(sys.argv) > 2:
    print("ERROR: too much arguments.")
    exit(0)

q = sys.argv[1]

query = preprocess(q)
query = [word for i, word in query]

dir_names = [
    "e-prostor.gov.si", "e-uprava.gov.si", "evem.gov.si", "podatki.gov.si"
]
dir_nums = [218, 60, 662, 564]

num_files = sum(dir_nums)
files_checked = 0

print("Executing query...")

start = time.time()

results = dict()