Example #1
0
    def __getitem__(self, idx):
        img_feat_iter = np.zeros(1)
        ques_ix_iter = np.zeros(1)
        ans_iter = np.zeros(1)

        ans = self.ans_list[idx]
        qid = int(ans['question_id'])
        ques = self.id_to_ques[qid]

        # ques_path = self.id_to_ques_path[qid]
        # ques_ix = np.load(ques_path)

        id = int(ans['image_id'])
        img_path = self.id_to_img_path[id]
        img_feat = np.load(img_path)

        img_feat_x = img_feat['x'].transpose((1, 0))

        if img_feat_x.shape[0] > my_cfg.img_feat_pad_size:
            img_feat_x = img_feat_x[:my_cfg.img_feat_pad_size]

        img_feat_x = np.pad(
            img_feat_x,
            ((0, my_cfg.img_feat_pad_size - img_feat_x.shape[0]), (0, 0)),
            mode='constant',
            constant_values=0)
        ques_ix = np.zeros(my_cfg.max_token, np.int64)
        words = re.sub(r"([.,'!?\"()*#:;])", '',
                       ques['question'].lower()).replace('-', ' ').replace(
                           '/', ' ').split()

        for ix, word in enumerate(words):
            if word in self.token_to_ix:
                ques_ix[ix] = self.token_to_ix[word]
            else:
                ques_ix[ix] = self.token_to_ix['UNK']
            if ix + 1 == my_cfg.max_token:
                break
        # Process answer
        ans_score = np.zeros(self.ans_to_ix.__len__(), np.float32)
        ans_prob_dict = {}

        for ans_ in ans['answers']:
            ans_proc = pre.prep_ans(ans_['answer'])
            if ans_proc not in ans_prob_dict:
                ans_prob_dict[ans_proc] = 1
            else:
                ans_prob_dict[ans_proc] += 1

        for ans_ in ans_prob_dict:
            if ans_ in self.ans_to_ix:
                ans_score[self.ans_to_ix[ans_]] = pre.get_score(
                    ans_prob_dict[ans_])

        # np.save(my_cfg.TRAIN['ProcessedA'] + str(qid) + 'npy', ques_ix)
        return torch.from_numpy(img_feat_x), \
               torch.from_numpy(ques_ix), \
               torch.from_numpy(ans_score), idx
Example #2
0
    def __getitem__(self, idx):
        img_feat_iter = np.zeros(1)
        ques_ix_iter = np.zeros(1)
        ans_iter = np.zeros(1)

        ans = self.ans_list[idx]
        qid = int(ans['question_id'])
        ques_path = self.id_to_ques_path[qid]
        ques_ix = np.load(ques_path)

        if ques_ix.shape[0] > my_cfg.max_token:
            sep = ques_ix[-1]
            ques_ix = ques_ix[:my_cfg.max_token]
            ques_ix[-1] = sep

        ques_ix = np.pad(ques_ix,
                         ((0, my_cfg.max_token - ques_ix.shape[0]), (0, 0)),
                         mode='constant',
                         constant_values=0)

        id = int(ans['image_id'])
        img_path = self.id_to_img_path[id]
        img_feat = np.load(img_path)
        boxes = img_feat['boxes']
        img_feat_x = img_feat['x']

        if img_feat_x.shape[0] > my_cfg.img_feat_pad_size:
            img_feat_x = img_feat_x[:my_cfg.img_feat_pad_size]

        img_feat_x = np.pad(
            img_feat_x,
            ((0, my_cfg.img_feat_pad_size - img_feat_x.shape[0]), (0, 0)),
            mode='constant',
            constant_values=0)

        # Process answer
        ans_score = np.zeros(self.ans_to_ix.__len__(), np.float32)
        ans_prob_dict = {}

        for ans_ in ans['answers']:
            ans_proc = pre.prep_ans(ans_['answer'])
            if ans_proc not in ans_prob_dict:
                ans_prob_dict[ans_proc] = 1
            else:
                ans_prob_dict[ans_proc] += 1

        for ans_ in ans_prob_dict:
            if ans_ in self.ans_to_ix:
                ans_score[self.ans_to_ix[ans_]] = pre.get_score(
                    ans_prob_dict[ans_])

        return torch.from_numpy(img_feat_x), \
               torch.from_numpy(ques_ix), \
               torch.from_numpy(ans_score), \
               torch.from_numpy(boxes).permute(1, 0), idx
Example #3
0
    def __getitem__(self, idx):
        img_feat_iter = np.zeros(1)
        ques_ix_iter = np.zeros(1)
        ans_iter = np.zeros(1)

        ans = self.ans_list[idx]
        qid = int(ans['question_id'])
        ques_path = self.id_to_ques_path[qid]
        ques_ix = np.load(ques_path)

        id = int(ans['image_id'])
        img_path = self.id_to_img_path[id]
        img_feat = np.load(img_path, allow_pickle=True)['arr_0'][()]

        img_feat_x = img_feat['x']
        boxes = img_feat['boxes']

        if img_feat_x.shape[0] > my_cfg.img_feat_pad_size:
            img_feat_x = img_feat_x[:my_cfg.img_feat_pad_size]
            boxes = boxes[:my_cfg.img_feat_pad_size]

        img_feat_x = np.pad(
            img_feat_x,
            ((0, my_cfg.img_feat_pad_size - img_feat_x.shape[0]), (0, 0)),
            mode='constant',
            constant_values=0)
        boxes = np.pad(boxes, ((0, my_cfg.img_feat_pad_size - boxes.shape[0]),
                               (0, 0)),
                       mode='constant',
                       constant_values=0)
        # Process answer
        ans_score = np.zeros(self.ans_to_ix.__len__(), np.float32)
        ans_prob_dict = {}

        for ans_ in ans['answers']:
            ans_proc = pre.prep_ans(ans_['answer'])
            if ans_proc not in ans_prob_dict:
                ans_prob_dict[ans_proc] = 1
            else:
                ans_prob_dict[ans_proc] += 1

        for ans_ in ans_prob_dict:
            if ans_ in self.ans_to_ix:
                ans_score[self.ans_to_ix[ans_]] = pre.get_score(
                    ans_prob_dict[ans_])

        # np.save(my_cfg.TRAIN['ProcessedA'] + str(qid) + 'npy', ques_ix)
        return torch.from_numpy(img_feat_x), \
               torch.from_numpy(ques_ix), \
               torch.from_numpy(ans_score), \
               torch.from_numpy(boxes).permute(1, 0), idx
Example #4
0
    def __getitem__(self, idx):
        img_feat_iter = np.zeros(1)
        ques_ix_iter = np.zeros(1)
        ans_iter = np.zeros(1)

        ans = self.ans_list[idx]
        qid = int(ans['question_id'])
        ques_path = self.id_to_ques_path[qid]
        ques_ix = np.load(ques_path)

        if ques_ix.shape[0] > my_cfg.max_token:
            sep = ques_ix[-1]
            ques_ix = ques_ix[:my_cfg.max_token]
            ques_ix[-1] = sep

        ques_ix = np.pad(ques_ix,
                         ((0, my_cfg.max_token - ques_ix.shape[0]), (0, 0)),
                         mode='constant',
                         constant_values=0)

        id = int(ans['image_id'])
        img_path = self.id_to_img_path[id]
        if 'val' in img_path:
            texts_path = my_cfg.VAL['Texts'] + img_path.split('/')[-1].split(
                '.')[0] + '.jpg'
            feats_path = my_cfg.VAL['Texts'][:-1] + '_1/' + img_path.split(
                '/')[-1].split('.')[0] + '.jpg'
        else:
            texts_path = my_cfg.TRAIN['Texts'] + img_path.split('/')[-1].split(
                '.')[0] + '.jpg'
            feats_path = my_cfg.TRAIN['Texts'][:-1] + '_1/' + img_path.split(
                '/')[-1].split('.')[0] + '.jpg'
        texts = list(np.load(texts_path + '.npy'))
        text_feats = np.load(feats_path + '.npy')

        img_feat = np.load(img_path)

        img_feat_x = img_feat['arr_0']

        if img_feat_x.shape[0] > my_cfg.img_feat_pad_size:
            img_feat_x = img_feat_x[:my_cfg.img_feat_pad_size]

        if len(texts) > 14:
            texts = texts[:14]

        img_feat_x = np.pad(
            img_feat_x,
            ((0, my_cfg.img_feat_pad_size - img_feat_x.shape[0]), (0, 0)),
            mode='constant',
            constant_values=0)
        # Process answer
        ans_score = np.zeros(self.ans_to_ix.__len__() + 14, np.float32)
        ans_prob_dict = {}

        for ans_ in ans['answers']:
            ans_proc = pre.prep_ans(ans_['answer'])
            if ans_proc not in ans_prob_dict:
                ans_prob_dict[ans_proc] = 1
            else:
                ans_prob_dict[ans_proc] += 1

        while len(texts) < 14:
            texts.append('')
        for ans_ in ans_prob_dict:
            for j, _text in enumerate(texts):
                text_ = pre.prep_ans(_text)
                texts[j] = text_
                if ans_ == text_:
                    ans_score[self.ans_to_ix.__len__() + j] = pre.get_score(
                        ans_prob_dict[ans_])
            if ans_ in self.ans_to_ix:
                ans_score[self.ans_to_ix[ans_]] = pre.get_score(
                    ans_prob_dict[ans_])
        if text_feats.shape[0]:
            text_feats = np.pad(text_feats,
                                ((0, 14 - text_feats.shape[0]), (0, 0)),
                                mode='constant',
                                constant_values=0)
        else:
            text_feats = np.zeros((14, 300))
        # cat = np.array([])
        cat = np.ones(self.ans_to_ix.__len__() + 14, np.bool)
        for i in self.types_dict[ans['answer_type']]:
            cat[i] = False
        for j in range(14):
            cat[j + self.ans_to_ix.__len__()] = False
        return img_feat_x, \
               torch.from_numpy(ques_ix), \
               torch.from_numpy(ans_score), idx, torch.from_numpy(cat), torch.from_numpy(text_feats.astype(np.float32)), texts