Example #1
0
def test_inference_model(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        dev_count = fluid.core.get_cuda_device_count()
        place = fluid.CUDAPlace(0)
    else:
        dev_count = int(os.environ.get('CPU_NUM', 1))
        place = fluid.CPUPlace()

    exe = fluid.Executor(place)

    reader = task_reader.ClassifyReader(vocab_path=args.vocab_path,
                                        label_map_config=args.label_map_config,
                                        max_seq_len=args.max_seq_len,
                                        do_lower_case=args.do_lower_case,
                                        random_seed=args.random_seed)

    test_prog = fluid.Program()
    startup_prog = fluid.Program()

    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            infer_pyreader, ernie_inputs, labels = ernie_pyreader(
                args, pyreader_name="infer_pyreader")

            embeddings = ernie_encoder(ernie_inputs, ernie_config=ernie_config)
            probs = create_model(args,
                                 embeddings,
                                 labels=labels,
                                 is_prediction=True)

    test_prog = test_prog.clone(for_test=True)
    exe.run(startup_prog)

    assert (args.inference_model_dir)
    infer_data_generator = reader.data_generator(input_file=args.test_set,
                                                 batch_size=args.batch_size /
                                                 dev_count,
                                                 phase="infer",
                                                 epoch=1,
                                                 shuffle=False)

    infer_program, feed_names, fetch_targets = fluid.io.load_inference_model(
        dirname=args.inference_model_dir,
        executor=exe,
        model_filename="model.pdmodel",
        params_filename="params.pdparams")

    infer_pyreader.set_batch_generator(infer_data_generator)
    inference(exe, test_prog, infer_pyreader, [probs.name], "infer")
def main(args):
    """
    Main Function
    """
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    reader = task_reader.ClassifyReader(vocab_path=args.vocab_path,
                                        label_map_config=args.label_map_config,
                                        max_seq_len=args.max_seq_len,
                                        do_lower_case=args.do_lower_case,
                                        random_seed=args.random_seed)

    if not (args.do_train or args.do_val or args.do_infer):
        raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                train_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args, pyreader_name='train_pyreader')

                # get ernie_embeddings
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(
                        ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs,
                                               ernie_config=ernie_config)

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(args,
                                                        embeddings,
                                                        labels=labels,
                                                        is_prediction=False)

                optimizer = fluid.optimizer.Adam(learning_rate=args.lr)
                optimizer.minimize(loss)

        if args.verbose:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val:
        test_data_generator = reader.data_generator(input_file=args.dev_set,
                                                    batch_size=args.batch_size,
                                                    phase='dev',
                                                    epoch=1,
                                                    shuffle=False)
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                test_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args, pyreader_name='eval_reader')

                # get ernie_embeddings
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(
                        ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs,
                                               ernie_config=ernie_config)

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(args,
                                                        embeddings,
                                                        labels=labels,
                                                        is_prediction=False)

        test_prog = test_prog.clone(for_test=True)

    if args.do_infer:
        infer_data_generator = reader.data_generator(
            input_file=args.test_set,
            batch_size=args.batch_size,
            phase='infer',
            epoch=1,
            shuffle=False)
        infer_prog = fluid.Program()
        with fluid.program_guard(infer_prog, startup_prog):
            with fluid.unique_name.guard():
                infer_pyreader, ernie_inputs, labels = ernie_pyreader(
                    args, pyreader_name="infer_pyreader")

                # get ernie_embeddings
                if args.use_paddle_hub:
                    embeddings = ernie_encoder_with_paddle_hub(
                        ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie_encoder(ernie_inputs,
                                               ernie_config=ernie_config)

                probs = create_model(args,
                                     embeddings,
                                     labels=labels,
                                     is_prediction=True)

        infer_prog = infer_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint:
            init_checkpoint(exe,
                            args.init_checkpoint,
                            main_program=train_program)
    elif args.do_val:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe, args.init_checkpoint, main_program=test_prog)
    elif args.do_infer:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe, args.init_checkpoint, main_program=infer_prog)

    if args.do_train:
        train_exe = exe
        train_pyreader.set_batch_generator(train_data_generator)
    else:
        train_exe = None
    if args.do_val:
        test_exe = exe
        test_pyreader.set_batch_generator(test_data_generator)
    if args.do_infer:
        test_exe = exe
        infer_pyreader.set_batch_generator(infer_data_generator)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    fetch_list = [loss.name, accuracy.name, num_seqs.name]
                else:
                    fetch_list = []

                outputs = train_exe.run(program=train_program,
                                        fetch_list=fetch_list,
                                        return_numpy=False)
                if steps % args.skip_steps == 0:
                    np_loss, np_acc, np_num_seqs = outputs
                    np_loss = np.array(np_loss)
                    np_acc = np.array(np_acc)
                    np_num_seqs = np.array(np_num_seqs)
                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        print(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("step: %d, ave loss: %f, "
                          "ave acc: %f, speed: %f steps/s" %
                          (steps, np.sum(total_cost) / np.sum(total_num_seqs),
                           np.sum(total_acc) / np.sum(total_num_seqs),
                           args.skip_steps / used_time))
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps),
                                             "checkpoint")
                    fluid.save(train_program, save_path)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps), "checkpoint")
                fluid.save(train_program, save_path)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_infer:
        print("Final test result:")
        infer(exe, infer_prog, infer_pyreader, [probs.name], "infer")