Example #1
0
def process_batch1_batchtoind(data_dir,
                              result_dir,
                              batch="A",
                              ind="1085",
                              sample=True,
                              sample_seed=0,
                              celltype_gran=1):
    '''Process batch1 A -> S5, as opposed to S1 -> S5

    @batch: batch A as training datasets
    @ind: ind S5 as predictor
    @sample: whether to downsample or not
    @sample_seed: random seed for sampling
    '''
    ## get training dataset
    train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, batch=batch)
    train_adata.obs.index.name = None

    ## get test dataset
    test_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, ind=ind)
    test_adata.obs.index.name = None

    ## downsample training dataset to S1 = 1,551 cells
    if sample:
        random.seed(sample_seed)
        sampled_cells = random.sample(list(train_adata.obs_names), k=1551)
        train_adata = train_adata[sampled_cells]

    ## curate given sub-cell types to major cell types
    train_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        train_adata, celltype_gran)
    test_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        test_adata, celltype_gran)
    return train_adata, test_adata
Example #2
0
def process_batch1_multiinds(data_dir,
                             result_dir,
                             sample_ind,
                             pred_ind,
                             celltype_gran=1,
                             sample=False,
                             sample_seed=0):
    '''Process multi individuals to predict one individual

    @sample_ind: downsample to a certain individual number
    @pred_ind: the predicted individual
    '''
    batch1_inds = [1043, 1079, 1154, 1249, 1493, 1511, 1598, 1085]

    exclude_list = batch1_inds
    exclude_list.remove(int(pred_ind))

    train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir,
                                                       ind=exclude_list)
    if sample:  ## sample to average number
        avg_number = train_adata.shape[0] // len(exclude_list)

        print("=== Downsample to number:", avg_number)
        random.seed(sample_seed)
        sampled_cells = random.sample(list(train_adata.obs_names),
                                      k=avg_number)
        train_adata = train_adata[sampled_cells]

    test_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, ind=pred_ind)
    train_adata.obs.index.name = None
    test_adata.obs.index.name = None
    return train_adata, test_adata
Example #3
0
def process_batch1_batch2_ind(data_dir,
                              result_dir,
                              input1,
                              input2,
                              celltype_gran=1):
    '''Use individuals from one batch to predict another batch

    @input1/input2: can be batch1_indID/batc2_indID
    @celltype_gran: 0 major; 1 sub
    '''
    ## split input1
    input1_list = input1.split('_')
    input1_batch = input1_list[0]
    if len(input1_list) > 1:
        input1_inds = '_'.join(input1_list[1:])
    else:
        input1_inds = None

    input2_list = input2.split('_')
    input2_batch = input2_list[0]
    if len(input2_list) > 1:
        input2_inds = '_'.join(input2_list[1:])
    else:
        input2_inds = None

    ## extract train and test adata according to batch information
    if input1_batch == "batch1":
        train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir,
                                                           ind=input1_inds)
    elif "batch2" in input1_batch:
        cond = input1_batch.replace("batch2", "")
        if cond == "":
            train_adata = load_PBMC_data.load_PBMC_batch2_data(data_dir,
                                                               ind=input1_inds)
        else:
            train_adata = load_PBMC_data.load_PBMC_batch2_data(data_dir,
                                                               ind=input1_inds,
                                                               condition=cond)

    if input2_batch == "batch1":
        test_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir,
                                                          ind=input2_inds)
    elif "batch2" in input2_batch:
        cond = input2_batch.replace("batch2", "")
        if cond == "":
            test_adata = load_PBMC_data.load_PBMC_batch2_data(data_dir,
                                                              ind=input2_inds)
        else:
            test_adata = load_PBMC_data.load_PBMC_batch2_data(data_dir,
                                                              ind=input2_inds,
                                                              condition=cond)

    ## curate given sub-cell types to major cell types
    train_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        train_adata, celltype_gran)
    test_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        test_adata, celltype_gran)
    return train_adata, test_adata
Example #4
0
def process_PBMC_comparison(data_dir,
                            result_dir,
                            train="Kang",
                            test="Zheng",
                            sample_seed=0):
    '''Use curated PBMC Zheng dataset as target (B cells, CD14+ Monocytes, NK cells, CD4 T cells, CD8 T cells)

    @train: 
        - Kang: select one individual from healthy as reference, 10X
        - Ding: select pbmc fresh sample (pbmc2) sequenced by 10X as reference
    '''
    input = train.split('_')
    dataset = input[0]
    infos = None
    if len(input) > 1:
        infos = input[1:]

    ## build train dataset
    if "Kang" == dataset:
        if infos is None:
            train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir,
                                                               ind="1154")
        elif infos[0] == "batch1":
            train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir)
    if "Ding" == dataset:
        if infos is None:
            train_adata = load_PBMCprotocol_data.load_PBMC_protocols_data(
                data_dir, exp="pbmc2", protocol="10x-v2", curate=True)
        elif infos[0] == "droplet":
            train_adata = load_PBMCprotocol_data.load_PBMC_protocols_data(
                data_dir, exp="pbmc2", protocol_type="droplet", curate=True)

    ## build test dataset
    adata = load_PBMCZheng_data.load_PBMCZheng_data(data_dir, curate=True)
    random.seed(sample_seed)
    train_cells = random.sample(adata.obs_names.tolist(),
                                round(0.8 * adata.shape[0]))
    test_cells = list(set(adata.obs_names) - set(train_cells))
    test_adata = adata[test_cells]
    return train_adata, test_adata
Example #5
0
def process_batch1_ind(data_dir,
                       result_dir,
                       ind1="1154",
                       ind2="1085",
                       celltype_gran=1):
    ''' Process individual data of PBMC batch1

    @data_dir: where PBMC batch1 data stroes
    @result_dir: where to store PCA/tSNE/UMAP result
    @celltype_gran: granularity of cell types, 0: major cell types, 1:sub-celltypes
        According to the dataset, the give cell types are sub-cell types
    '''
    ## add batch info
    train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, ind=ind1)
    test_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, ind=ind2)

    ## curate given sub-cell types to major cell types
    train_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        train_adata, celltype_gran)
    test_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        test_adata, celltype_gran)
    return train_adata, test_adata
Example #6
0
def process_batch1_ABC(data_dir,
                       result_dir,
                       batch1="A",
                       batch2="B",
                       celltype_gran=1):
    ''' Process two batches for GEDFN

    @data_dir: where PBMC batch1/batch2 data stroes
    @result_dir: where to store PCA/tSNE/UMAP result
    @celltype_gran: default 1, given as sub-cell types
    '''
    ## add batch info
    train_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, batch=batch1)
    test_adata = load_PBMC_data.load_PBMC_batch1_data(data_dir, batch=batch2)
    train_adata.obs.index.name = None
    test_adata.obs.index.name = None

    ## curate given sub-cell types to major cell types
    train_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        train_adata, celltype_gran)
    test_adata = load_PBMC_data.curate_PBMC_demulx_celltypes(
        test_adata, celltype_gran)
    return train_adata, test_adata