Example #1
0
def convert_online_example(example, max_seq_length, tokenizer):
    text_list = example.text_a
    tokens = []
    for index, word in enumerate(text_list):
        token = tokenizer.tokenize(word)
        tokens.extend(token)

    if len(tokens) > max_seq_length - 2:
        tokens = tokens[: max_seq_length - 2]

    final_tokens = []
    segment_ids = []

    final_tokens.append("[CLS]")
    segment_ids.append(0)
    for index, token in enumerate(tokens):
        final_tokens.append(token)
        if example.label:
            label = labels[index]
        segment_ids.append(0)
    final_tokens.append("[SEP]")
    segment_ids.append(0)

    input_ids = tokenizer.convert_tokens_to_ids(final_tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        final_tokens.append('[PAD]')

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(final_tokens) == max_seq_length


    print("*** Example ***")
    print("guid: %s" % (example.guid))
    print("tokens: %s" % " ".join(
                [tokenization.printable_text(x) for x in tokens]))
    print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
    print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
    print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))

    feature = InputFeatures(
            input_ids=input_ids,
            input_mask=input_mask,
            segment_ids=segment_ids,
            is_real_example=True)
    return feature
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    # if isinstance(example, PaddingInputExample):
    #   return InputFeatures(
    #       input_ids=[0] * max_seq_length,
    #       input_mask=[0] * max_seq_length,
    #       segment_ids=[0] * max_seq_length,
    #       label_id=0,
    #       is_real_example=False)

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    # The convention in BERT is:
    # (a) For sequence pairs:
    #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
    #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
    # (b) For single sequences:
    #  tokens:   [CLS] the dog is hairy . [SEP]
    #  type_ids: 0     0   0   0  0     0 0
    #
    # Where "type_ids" are used to indicate whether this is the first
    # sequence or the second sequence. The embedding vectors for `type=0` and
    # `type=1` were learned during pre-training and are added to the wordpiece
    # embedding vector (and position vector). This is not *strictly* necessary
    # since the [SEP] token unambiguously separates the sequences, but it makes
    # it easier for the model to learn the concept of sequences.
    #
    # For classification tasks, the first vector (corresponding to [CLS]) is
    # used as the "sentence vector". Note that this only makes sense because
    # the entire model is fine-tuned.
    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 1:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)
    return feature
Example #3
0
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
    """Converts a single `InputExample` into a single `InputFeatures`."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = None
    if example.text_b:
        tokens_b = tokenizer.tokenize(example.text_b)

    if tokens_b:
        # Modifies `tokens_a` and `tokens_b` in place so that the total
        # length is less than the specified length.
        # Account for [CLS], [SEP], [SEP] with "- 3"
        _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
    else:
        # Account for [CLS] and [SEP] with "- 2"
        if len(tokens_a) > max_seq_length - 2:
            tokens_a = tokens_a[0:(max_seq_length - 2)]

    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(0)
    for token in tokens_a:
        tokens.append(token)
        segment_ids.append(0)
    tokens.append("[SEP]")
    segment_ids.append(0)

    if tokens_b:
        for token in tokens_b:
            tokens.append(token)
            segment_ids.append(1)
        tokens.append("[SEP]")
        segment_ids.append(1)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = label_map[example.label]
    if ex_index < 1:
        tf.logging.info("*** Example ***")
        tf.logging.info("guid: %s" % (example.guid))
        tf.logging.info(
            "tokens: %s" %
            " ".join([tokenization.printable_text(x) for x in tokens]))
        tf.logging.info("input_ids: %s" % " ".join([str(x)
                                                    for x in input_ids]))
        tf.logging.info("input_mask: %s" %
                        " ".join([str(x) for x in input_mask]))
        tf.logging.info("segment_ids: %s" %
                        " ".join([str(x) for x in segment_ids]))
        tf.logging.info("label: %s (id = %d)" % (example.label, label_id))

    feature = InputFeatures(input_ids=input_ids,
                            input_mask=input_mask,
                            segment_ids=segment_ids,
                            label_id=label_id,
                            is_real_example=True)
    return feature
Example #4
0
def convert_single_example(ex_index, example, label_map, max_seq_length, tokenizer, is_predict=True):
    print(label_map)

    text_list = example.text_a.split(' ')
    if example.label:
        label_list = example.label.split(' ')
    
    tokens = []
    labels = []
    for index, word in enumerate(text_list):
        token = tokenizer.tokenize(word)
        tokens.extend(token)
        
        if example.label:
            label = labes_list[index]
            for i, _ in enumerate(token):
                if i == 0:
                    labels.append(label)
                else:
                    labels.append('[WordPiece]')

    print(tokens)
    if len(tokens) > max_seq_length - 2:
        tokens = tokens[: max_seq_length - 2]

    if example.label and len(tokens) > max_seq_length - 2:
        labels = labels[: max_seq_length - 2]

    final_tokens = []
    segment_ids = []
    label_ids = []

    final_tokens.append("[CLS]")
    label_ids.append(label_map['[CLS]'])
    segment_ids.append(0)
    for index, token in enumerate(tokens):
        final_tokens.append(token)
        if example.label:
            label = labels[index]
            label_ids.append(label_map[label])
        segment_ids.append(0)
    final_tokens.append("[SEP]")
    label_ids.append(label_map['[SEP]'])
    #label_ids.append(label_map['O'])
    segment_ids.append(0)

    input_ids = tokenizer.convert_tokens_to_ids(final_tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
        input_ids.append(0)
        input_mask.append(0)
        segment_ids.append(0)
        if example.label:
            label_ids.append(label_map['[PAD]'])
        final_tokens.append('[PAD]')

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length
    assert len(final_tokens) == max_seq_length

    if example.label:
        assert len(label_ids) == max_seq_length

    #print(example.label)
    if ex_index < 3:
        print("*** Example ***")
        print("guid: %s" % (example.guid))
        print("tokens: %s" % " ".join(
                [tokenization.printable_text(x) for x in tokens]))
        print("input_ids: %s" % " ".join([str(x) for x in input_ids]))
        print("input_mask: %s" % " ".join([str(x) for x in input_mask]))
        print("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
        print("label_ids: %s " % " ".join([str(x) for x in label_ids]))

    feature = InputFeatures(
            input_ids=input_ids,
            input_mask=input_mask,
            segment_ids=segment_ids,
            label_ids=label_ids,
            is_real_example=True)
    return feature