def save_data_list(inpath, outpath, filenames, filename_bbox):

    for size in IMG_SIZES:
        print('Processing images of size %d' % size)

        cnt = 0
        images = np.ndarray(shape=(len(filenames), size, size, 3),
                            dtype=np.uint8)
        for idx, key in enumerate(filenames):
            bbox = filename_bbox[key]
            f_name = '%s/CUB_200_2011/images/%s.jpg' % (inpath, key)
            img = get_image(f_name, LOAD_SIZE, is_crop=True, bbox=bbox)
            img = img.astype('uint8')
            img = img.astype('uint8')

            if size != LOAD_SIZE:
                img = scipy.misc.imresize(img, [size, size], 'bicubic')
            images[idx, :, :, :] = np.array(img)

            cnt += 1
            if cnt % 100 == 0:
                print('\rLoad %d......' % cnt, end="", flush=True)

        print('Images processed: %d', len(filenames))

        outfile = outpath + str(size) + 'images_cvs.pickle'
        joblib.dump(images, outfile)
        print('save to: ', outfile)
Example #2
0
def save_data_list(inpath, outpath, filenames):
    hr_images = []
    lr_images = []
    lr_size = int(LOAD_SIZE / LR_HR_RETIO)
    cnt = 0
    for key in filenames:
        f_name = '%s/%s.jpg' % (inpath, key)
        img = get_image(f_name, LOAD_SIZE, is_crop=False)
        img = img.astype('uint8')
        hr_images.append(img)
        lr_img = scipy.misc.imresize(img, [lr_size, lr_size], 'bicubic')
        lr_images.append(lr_img)
        cnt += 1
        if cnt % 100 == 0:
            print('Load %d......' % cnt)
    #
    print('images', len(hr_images), hr_images[0].shape, lr_images[0].shape)
    outfile = outpath + str(LOAD_SIZE) + 'images.pickle'
    with open(outfile, 'wb') as f_out:
        pickle.dump(hr_images, f_out)
        print('save to: ', outfile)
    #
    outfile = outpath + str(lr_size) + 'images.pickle'
    with open(outfile, 'wb') as f_out:
        pickle.dump(lr_images, f_out)
        print('save to: ', outfile)