print __doc__ with open(sys.argv[1], 'r') as f: W, _, bh = pic.load(f) try: with open('logreg_backup_' + str(W.shape[0]), + '.pkl', 'r') as f: W2, b2 = pic.load(f) pretrain = False except: W2 = None b2 = None pretrain = True labels, train, test = pp.load_from_csv(sys.argv[2], sys.argv[3]) train, test, labels, test_labels = cv.train_test_split(train, labels, test_size=0.2) mlp = ae.TwoLayerPerceptron(784, W.shape[1], 10, W_1_init=W, b_1_init=bh, W_2_init=W2, b_2_init=b2) if pretrain: #greedy pretraining
""" import preprocess as pp import sys import autoencoder as ae import csv import cPickle as pic import sklearn.decomposition as dec if __name__ == '__main__': print __doc__ labels, train_features, test_features = pp.load_from_csv( sys.argv[1], sys.argv[2]) try: if sys.argv[6] == 'whiten': pca = dec.PCA(whiten=True) pca.fit(train_features) train_features = pca.transform(train_features) test_features = pca.transform(test_features) else:
import preprocess as pp import train_classifier as clf from autoencoder import LogisticRegression import numpy as np if __name__ == "__main__": labels, train, test = pp.load_from_csv( 'train.csv', 'test.csv' ) train_batches = train.reshape((420,100,784)) label_batches = np.array(labels).reshape((420,100)) logreg = LogisticRegression( 784, 10 ) logreg.fit( train_batches , label_batches, nbatches = 420 )
import preprocess as pp import train_classifier as clf from autoencoder import LogisticRegression import numpy as np if __name__ == "__main__": labels, train, test = pp.load_from_csv('train.csv', 'test.csv') train_batches = train.reshape((420, 100, 784)) label_batches = np.array(labels).reshape((420, 100)) logreg = LogisticRegression(784, 10) logreg.fit(train_batches, label_batches, nbatches=420)
""" import preprocess as pp import sys import autoencoder as ae import csv import cPickle as pic import sklearn.decomposition as dec if __name__=='__main__': print __doc__ labels, train_features, test_features = pp.load_from_csv(sys.argv[1], sys.argv[2]) try: if sys.argv[6]=='whiten': pca = dec.PCA( whiten=True ) pca.fit( train_features ) train_features = pca.transform( train_features ) test_features = pca.transform( test_features ) else:
#otherwise, if the costs are diminishing too slowly, #increase the learning rate by 1.1 if np.abs(rel_cost_change) < tol_low and rel_cost_change < 0.0: learning_rate = 1.1*learning_rate #if costs is changing less than the tolerance, stop, learning is done if np.abs(rel_cost_change) < tolerance: break if __name__ == '__main__': print __doc__%(sys.argv[1],sys.argv[2],sys.argv[3]) labels, train, test = pp.load_from_csv( sys.argv[1], sys.argv[2] ) #set values to something useful, batch_size and number of epochs # doesn't seem to make much of a difference training_epochs = 300 training_batches = 100 #patch_size, for 28x28 images, 10x10 patches seemed reasonable patch_size = 15 batch_size = int(train.shape[0] / training_batches) n_filters = 500 output_file = ('ae_' + str(patch_size) + 'x' + str(patch_size) + '_' + str(n_filters) + '_filters_backup.pikle')