def pred(args): """ dataset: tfidf model: MultinomialNB(alpha=0.05) cross validate f1-score: 0.1613 test f1-score: 0.16181 """ X_train, y_train = load_train_tfidf(), load_target() X_test = load_test_tfidf() clf = MultinomialNB(alpha=args.alpha) train_and_test(clf, X_train, y_train, X_test, args.output)
def pred(args): """ dataset: tfidfdim model: LinearSVC(C=1.0), ovo cross validate f1-score: 0.1723 test f1-score: 0.16922 """ X_train, y_train = load_train_tfidfdim(), load_target() X_test = load_test_tfidfdim() svm = LinearSVC(C=args.C) clf = OneVsOneClassifier(svm) train_and_test(clf, X_train, y_train, X_test, args.output)
def cv(args): X_train, y_train = load_train_tfidfdim(), load_target() svm = LinearSVC(C=args.C, verbose=args.verbose) clf = OneVsOneClassifier(svm) cross_validate_model(clf, X_train, y_train, cv=args.fold)
def cv(args): X_train, y_train = load_train_tfidf(), load_target() clf = MultinomialNB(alpha=args.alpha) cross_validate_model(clf, X_train, y_train, cv=args.fold)
def val(args): X_train, y_train = load_train_tfidf(), load_target() clf = MultinomialNB(alpha=args.alpha) validate_model(clf, X_train, y_train)