Example #1
0
def count_loops(img):
    global parent
    parent = []
    for i in range(0, 50 * 50):
        parent.append(i)
    img = cv2.resize(img, (50, 50), interpolation=cv2.INTER_CUBIC)
    img = pre.otsu_thresh(img)
    dir = [[1, 1], [1, 0], [1, -1], [0, 1], [0, -1], [-1, 1], [-1, 0],
           [-1, -1]]
    r, c = img.shape
    for i in range(0, r):
        for j in range(0, c):
            if img[i, j] == 0:
                continue
            for k in range(0, 8):
                x = i + dir[k][0]
                y = j + dir[k][1]
                if bounds(x, y, r, c) and img[x, y] != 0:
                    parenta = find(i * r + j)
                    parentb = find(x * r + y)
                    if parenta != parentb:
                        union(parenta, parentb)
    cnt = 0
    for i in range(0, r * c):
        if find(i) == i and img[int(i / r), i % r] != 0:
            cnt += 1
    l = []
    l.append(cnt)
    return l
Example #2
0
def histo(img):
    # img = abs(255 - img)
    img = cv2.resize(img, (25, 25), interpolation=cv2.INTER_CUBIC)
    img = pre.otsu_thresh(img)
    img[img == 255] = 1
    # util.display_image(img)
    vec = []
    vsum = np.sum(img, axis=0)
    hsum = np.sum(img, axis=1)
    for i in vsum:
        vec.append(i)
    for i in hsum:
        vec.append(i)
    return vec
Example #3
0
def pre_init(img):
    img = pre.cut_image(img)
    aspect = img.shape[0] / img.shape[1]
    img = cv2.resize(img, (50, 50), interpolation=cv2.INTER_CUBIC)
    img = pre.otsu_thresh(img)
    new_img = pre.thin_image(img)

    # changes for end-points counting
    # img = util.cnvt_bool_to_uint8(img)
    # kernel = np.ones((3,3),np.uint8)
    # dilation = cv2.dilate(img, kernel, iterations=1)
    # dilation[dilation==255]=1

    return aspect, img, new_img
Example #4
0
def give_me_the_equation(img, model):
    if len(img) == 0 or len(img[0]) == 0:
        return ""
    import preprocess as pre
    # util.display_image(img, 'do_ittttt')
    # print(path)
    # Converting light dark pixels ( <= 30 ) to black ( = 0 )
    img = pre.filter_image(img)
    # Thresholding OTSU

    img = pre.otsu_thresh(img)
    ans = ali.align(img, model)
    print(ans)
    # util.display_image(img)

    # characters = seg.split_characters(img)
    # # for c in characters:
    # #     util.display_image(c)
    # print("Do itt " + str(len(characters)))
    # ans = ""
    # idx = 0
    # pre = 0
    # for c in characters:
    #     y = util.predict_class(c, model)
    #     if align[idx] == 0:
    #         if pre == 0:
    #             ans = ans + str(y)
    #         else:
    #             ans = ans + "}" + str(y)
    #     elif align[idx] == 1:
    #         if pre == 0:
    #             ans = ans + "^{" + str(y)
    #         else:
    #             ans = ans + str(y)
    #     else:
    #         if pre == 0:
    #             ans = ans + "_{" + str(y)
    #         else:
    #             ans = ans + str(y)
    #     # print(y)
    #     pre = align[idx]
    #     idx = idx + 1
    # if pre != 0:
    #     ans = ans + "}"
    # # print ("ADITYA")
    # # print(ans)
    return tx.tolatex(ans)
Example #5
0
                        res = res + recurse(den, model) + "}^{" + recurse(
                            num, model) + "}"
                    else:
                        res = res + "\\sum_{"
                        res = res + recurse(den, model) + "}^{" + recurse(
                            num, model) + "}"
        previ = i
        if prev == -1:
            prev = i
    if flag == 0:
        res = res + dt.give_me_the_equation(img[:, prev:previ + 1], model)
    # print('Recurse exit')
    return res


# input the image
path = os.getcwd() + '\\TestEquations\\' + 'eq47.jpg'
# print(path)
img = pre.input_image(path)
util.display_image(img)
# align = ali.align(img)
# print("Result from CNN")
# print(recurse(img, "cnn"))

img = pre.filter_image(img)
img = pre.otsu_thresh(img)
print("Result from ANN")
print(recurse(img, "ann"))

util.display_image(img)
Example #6
0
def run(img):
    #input image in grayscale
    # img = pre.input_image('/home/sarthak/ip/text1.png')
    # util.display_image(img, 'original')

    #filtering of the input image
    img = pre.filter_image(img)
    # util.display_image(img, 'filtered')

    #smoothening the image
    # img = preprocess.gaussian_blur(img)
    # utility.display_image(img, 'Smoothened')

    #binarization/thresholding of the image
    img = pre.otsu_thresh(img)
    # util.display_image(img, 'binarized')

    #horizontal histogram for line segmentation
    lines = hist.line_seg(img)

    # print(len(lines))

    #displaying lines as recieved
    # for sline in lines:
    #     util.display_image(sline)

    #vertical histogram for words segmentation
    words = []
    for ekline in lines:
        # util.display_image(ekline)
        curr = hist.word_seg(ekline)
        words = words + curr
        # break #delete it

    # print(len(words))

    # displaying words of lines as recieved
    # for ekword in words:
    #     util.display_image(ekword)

    chars = []
    #separating characters from words
    # cnt = 0
    for ekword in words:
        # util.display_image(ekword)
        clist = hist.char_seg(ekword)
        chars.append(clist)

    # displaying characters as recieved
    # for clist in chars:
    #     for ch in clist:
    #         util.display_image(ch)
    #     break

    return chars

    sum = 0
    cnt = 0
    maxx = -1
    for word in chars:
        for charr in word:
            cnt += 1
            maxx = max(maxx, len(charr[0]))
            sum += charr.shape[1]
    sum = sum/cnt
    print(sum)
    print(chars[0][2].shape)

    final = []
    for word in chars:
        new_word = []
        for charr in word:
            if charr.shape[1] > maxx:
                histo = img.sum(axis=0)
                minn = 1000
                pos = -1
                for i in range(0, len(histo)):
                    if histo[i] < minn:
                        minn = histo[i]
                        pos = i
                new_word.append(charr[:,:pos+1])
                new_word.append(charr[:, pos:])
            else:
                new_word.append(charr)
        final.append(new_word)

    # for clist in final:
    #     for ch in clist:
    #         util.display_image(ch)
    #     break

    return final

# img = cv2.imread('/home/sarthak/ip/hello.jpg', 0)
# run(img)