def print_transformations(trainX_, trainY_): print("before crop") # for item in [trainX_, testX_, trainY_, testY_]: # print(item.shape) item_number = 2 single_item_x = trainX_[None, item_number, :, :, :] single_item_y = trainY_[None, item_number, :, :, :] print(single_item_x.shape) print(single_item_y.shape) single_item_x, single_item_y = processData( [single_item_x, single_item_y], commands=["crop", "transpose", "flip_x", "flip_y"]) print("after trans") print(single_item_x.shape) print(single_item_y.shape) for i in range(single_item_x.shape[0]): plot_threed(single_item_x[i], 'input', threshold=0.3, plot_num=4) plt.savefig('./plot/x' + str(i) + '.png', bbox_inches='tight') plot_fourd(single_item_y[i], 'truth', plot_num=5) plt.savefig('./plot/y' + str(i) + '.png', bbox_inches='tight')
return clf_descr, pred if __name__ == "__main__": model = loadVectors() # define the categories categories = [ 'stats', 'math', 'physics', 'cs' ] print("Processing data...") abstractsTrain, y_train, abstractsTest = processData() if opts.test_fraction: percent = (opts.test_fraction * 100.0) print("Using only %.f percent of the training data" % percent) threshold = int(opts.test_fraction * len(abstractsTrain)) if threshold == 0: print("Fraction too small, please choose a larger fraction") print() sys.exit(1) abstractsTrain = abstractsTrain[:threshold] y_train = y_train[:threshold] print("Train set size: %d documents" % len(abstractsTrain)) print("Test set size: %d documents" % len(abstractsTest)) print("done") print()
if __name__ == '__main__': data_params = { 'reload': False, #When True, parse time domain raw data again, use when data changes 'max_items_per_scan': 2, # maximum number of items in a scanf 'train_test_split': 0.7, #size of training data 'only_max': False, 'saved_path': "../new_res/*.json", 'use_backproj': True # set to false to use clean signal instead of backproj } # reload_data() trainX_, testX_, trainY_, testY_ = loadData(**data_params) trainX, trainY = processData( [trainX_, trainY_], commands=["crop", "transpose", "flip_x", "flip_y"]) testX, testY = processData([testX_, testY_], commands=["crop"]) # trainX, trainY = processData([trainX_, trainY_],commands = ["crop"]) # testX, testY = processData([testX_, testY_],commands = ["crop"]) N = len(trainX) idx = np.arange(N) np.random.seed(5) np.random.shuffle(idx) trainX, trainY = trainX[idx], trainY[idx] # combinedX = np.concatenate((trainX,testX),axis = 0) # combinedY = np.concatenate((trainY,testY),axis = 0)# (34, 40, 20, 21, 5) # combinedY = np.reshape(combinedY,(combinedY.shape[0],-1)) # trainY_flat= np.reshape(trainY,(trainY.shape[0],-1))
def load_data(filename, features): return preprocess.processData(filename, features)
print("test time: %0.3fs" % test_time) print() clf_descr = str(clf).split('(')[0] return clf_descr, pred if __name__ == "__main__": model = loadVectors() # define the categories categories = ['stats', 'math', 'physics', 'cs'] print("Processing data...") abstractsTrain, y_train, abstractsTest = processData() if opts.test_fraction: percent = (opts.test_fraction * 100.0) print("Using only %.f percent of the training data" % percent) threshold = int(opts.test_fraction * len(abstractsTrain)) if threshold == 0: print("Fraction too small, please choose a larger fraction") print() sys.exit(1) abstractsTrain = abstractsTrain[:threshold] y_train = y_train[:threshold] print("Train set size: %d documents" % len(abstractsTrain)) print("Test set size: %d documents" % len(abstractsTest)) print("done") print()
def main(_): print('preprocessing data ...') processData(FLAGS.year, FLAGS.domain, FLAGS.embedding) print('preparing data for model ...') trainData, testData, validData, sampleData = prepareData()