def cli(): if args.recommend: recommendation.start(args.meme) if args.force_index: index_data.start(args.force_index) if args.search: searchp.start(args) if args.preprocess: preprocess.start(args) if args.generate: meme_generator.start(args)
def cli(): #uses command line args to invoke sevices if args.recommend: recommendation.start(args.meme) if args.force_index: index_data.start(args.force_index) if args.search: searchp.start(args) if args.preprocess: preprocess.start(args) if args.generate: meme_generator.start(args)
def run_experiment(args): """run training and save to wandb""" wandb.init(project=args.project_name) sample_rate = args.sampling_rate X, y_labels = preprocess.start("Intra", sample_rate, test_path_folder=None, generator=False) model = build_model(X[0].shape, conv_1_size=args.conv_1_size, batch_norm=args.batch_norm, conv_2_size=args.conv_2_size, kernel_size=args.kernel_size, layer_1_size=args.layer_1_size, dropout=args.dropout, layer_2_size=args.layer_2_size, optimizer=args.optimizer, learning_rate=args.learning_rate, weight_initializers=args.weight_initializers) # log all values of interest to wandb wandb.config.update(args) dictionary_metrics = {out: [] for i, out in enumerate(model.metrics_names)} skf = StratifiedKFold(n_splits=5) for train_index, test_index in skf.split(X, y_labels): y = preprocess.convert_y_labels_to_hot_vectors(y_labels) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model.fit(X_train, y_train, epochs=args.epochs, batch_size=args.batch_size, verbose=1) metrics = model.evaluate(X_test, y_test) for i, metrics_names in enumerate(model.metrics_names): dictionary_metrics[metrics_names].append(metrics[i]) for key in dictionary_metrics: dictionary_metrics[key] = np.array(dictionary_metrics[key]).mean() wandb.log(dictionary_metrics)
def run_experiment(args): """run training and save to wandb""" wandb.init(project=args.project_name) sample_rate = args.sampling_rate X, y_labels = preprocess.start( "Cross", sample_rate, test_path_folder=None, generator=False) X_train, X_val, y_train, y_val = train_test_split( X, y_labels, test_size=0.06, random_state=42, stratify=y_labels) y_train = preprocess.convert_y_labels_to_hot_vectors(y_train) y_val = preprocess.convert_y_labels_to_hot_vectors(y_val) X_train = preprocess.outliers_removal(X_train) # First head configuration kernel_size_head_1 = int(X_train[1] * 0.05) strides_head_1 = int(kernel_size_head_1/2) # Second head configuration kernel_size_head_2 = int(X_train[1] * 0.25) strides_head_2 = int(kernel_size_head_2/2) wandb.config.update(args) indices_train = np.arange(X_train.shape[0]) indices_val = np.arange(X_val.shape[0]) np.random.shuffle(indices_train) np.random.shuffle(indices_val) X_train = X_train[indices_train] y_train = y_train[indices_train] X_val = X_train[indices_val] y_val = y_train[indices_val] model = build_model(X_train, y_train, X_val, y_val, conv_1_size=args.conv_1_size, conv_2_size=args.conv_2_size, kernel_size_head_1=kernel_size_head_1, strides_head_1=strides_head_1, kernel_size_head_2=kernel_size_head_2, strides_head_2=strides_head_2, layer_1_size=args.layer_1_size, dropout_conv=args.dropout_conv, dropout_dense=args.dropout_dense, layer_2_size=args.layer_2_size, optimizer=args.optimizer, learning_rate=args.learning_rate, weight_initializers=args.weight_initializers) # log all values of interest to wandb model.fit([X_train, X_train], y_train, validation_data=([X_val, X_val], y_val), epochs=args.epochs, batch_size=args.batch_size, callbacks=[WandbCallback(monitor="val_loss", mode="min")], verbose=1)
camera.capture(image_path[count]) print("mengambil gambar", count+1, " selesai") GPIO.output(flash, GPIO.LOW) count += 1 start = False print('Mengambil gambar selesai') bunyi(buzz, 2) stop = False waktu_mulai = time.clock() pic = 0 text = "" while pic < count: im = Image.open(image_path[pic]) im = preprocess.start(im) temp = pytesseract.image_to_string(im, lang='ind', config='--psm 6') temp = temp.replace('-', ' ') temp = temp.replace('\n', ' ') temp = re.sub(r'[^a-zA-Z0-9 ]','', temp) text = text + temp #im.close() pic += 1 print(text) bunyi(buzz, 3) print("INFO: Saying Text") print('Total huruf : ', len(text)) selesai = time.clock() - waktu_mulai
feature_kappas_LDAC[feature] = calculate_kappa(grade_dict, LDAC_grades[feature]) return (feature_kappas_SVM, feature_kappas_LDAC) if __name__ == '__main__': global kappa_all_features #if not path.exists("cache\\SVM_features_kappas.pickle") or not path.exists("cache\\LDAC_features_kappas.pickle"): # experiment.start_experiment(teacher_grades=grade_dict, essays=essay_collection) if not path.exists("cache\\SVM_model.pickle") or not path.exists( "cache\\LDAC_model.pickle"): if path.exists("cache\\essays.pickle"): essay_collection = cache_manager.read_essays() else: essay_collection = preprocess.start() cache_manager.cache_essays(essay_collection) if path.exists("cache\\grades.pickle"): grade_dict = cache_manager.read_grades() else: grade_dict = cache_manager.input_grades(essay_collection) train_all_features() feature_grades = train_each_feature() feature_kappas = evaluate_each_feature(feature_grades[0], feature_grades[1]) printing.print_feature_kappas(feature_kappas[0], feature_kappas[1]) else: svm = cache_manager.read_classifier() ldac = cache_manager.read_classifier("LDAC_model.pickle") essay_vector = preprocess.start(normalise=True, path="essays_to_test/") if (len(essay_vector) >= 1):