def read_data(idx):
    name, label = sample_list[idx]
    d = np.load(os.path.join(DATA_DIR, name + '.npz'))
    pix = zero_center(normalize(d['pix_resampled']))
    # set all outside regions to zero
    pix *= d['segmented_lungs_fill_dilated']
    return pix, label
# Load training labels
sample_list = []
with open(LABLE_FILE_TRAIN) as f:
    for name, label in csv.reader(f):
        sample_list.append((name, float(label)))
num_samples = len(sample_list)
print('number of samples:', num_samples)

# Pre-load all the data
data_list = [None] * num_samples
label_list = [None] * num_samples
for idx in range(num_samples):
    print('pre-loading data %d / %d' % (idx + 1, len(sample_list)))
    name, label = sample_list[idx]
    d = np.load(os.path.join(DATA_DIR, name + '.npz'))
    pix = zero_center(normalize(d['pix_resampled_add0'])).astype(np.float32)
    data_list[idx] = pix
    label_list[idx] = label
    d.close()

batch_data = np.zeros((N, Z, Y, X, 1), np.float32)
batch_labels = np.zeros((N, 1), np.float32)


def get_random_samples():
    inds = np.random.choice(num_samples, N, replace=False)
    for i, idx in enumerate(inds):
        batch_data[i, ..., 0] = data_list[idx]
        batch_labels[i] = label_list[idx]
    return batch_data, batch_labels
Example #3
0
def read_data(idx):
    name, label = sample_list[idx]
    d = np.load(os.path.join(DATA_DIR, name + '.npz'))
    pix = zero_center(normalize(d['pix_resampled_add0']))
    return pix, label