Example #1
0
def get_data():
    person_name = ["bear", "rabbit", "haha"]
    dirname = "jsondata"
    epochs = 50
    offset = "none"

    data = load(dirname + '/bear_data.npy')
    labels = load(dirname + '/bear_labels.npy')
    c = np.array(np.full(data.shape[0], 0))
    labels = np.vstack((labels, c))
    for i in range(2):
        a = load(dirname + '/' + person_name[i + 1] + '_data.npy')
        b = load(dirname + '/' + person_name[i + 1] + '_labels.npy')
        c = np.array(np.full(a.shape[0], i + 1))
        b = np.vstack((b, c))
        data = np.vstack((data, a))
        labels = np.hstack((labels, b))

    a = data
    print(labels)
    # print(pre.make_velocity(data).shape)
    # data = np.concatenate((data,pre.make_offset(a)),axis=2)
    data = np.concatenate((data, pre.make_velocity(a)), axis=2)
    # data = np.concatenate((data,pre.make_accel(a)),axis=2)
    # print(data.shape)

    data_test = data[np.where(labels[0, :] == 5), :, :, :]
    data = data[np.where(labels[0, :] <= 2), :, :, :]
    data_test = data_test.reshape(data_test.shape[1], data_test.shape[2],
                                  data_test.shape[3] * data_test.shape[4])
    data = data.reshape(data.shape[1], data.shape[2],
                        data.shape[3] * data.shape[4])
    print(data.shape)

    # labels = keras.utils.to_categorical(labels)
    # print(labels)
    labels_test = labels[:, np.where(labels[0, :] == 5)]
    labels = labels[:, np.where(labels[0, :] <= 2)]
    labels_test = labels_test.reshape(labels_test.shape[0],
                                      labels_test.shape[2])
    labels = labels.reshape(labels.shape[0], labels.shape[2])

    index = np.arange(data.shape[0])
    np.random.shuffle(index)
    data = data[index]
    labels[0] = labels[0][index]
    labels[1] = labels[1][index]

    # print(keras.utils.to_categorical(labels[0]))
    # print(keras.utils.to_categorical(labels[1]))
    labels_v = keras.utils.to_categorical(labels[0], num_classes=6)
    labels = keras.utils.to_categorical(labels[1], num_classes=3)
    print(labels_v)
    print(labels)
    labels_test = keras.utils.to_categorical(labels_test[1], num_classes=3)

    return data, data_test, labels, labels_test, labels_v
            plt.scatter(X_norm[i, 0], X_norm[i, 1], c=cValue[y[i]], alpha=0.7)
        plt.show()


if __name__ == '__main__':

    filename = 'gym_6kind_012_5_'
    action_start = 0
    X_train = load(filename + "data.npy")
    Y_train = load(filename + "labels.npy")
    Y_p_train = load(filename + "labels_p.npy")
    X_test = load(filename + "data_test.npy")
    Y_test = load(filename + "labels_test.npy")
    Y_p_test = load(filename + "labels_p_test.npy")

    tmp = pre.make_velocity(X_train)
    X_train = np.concatenate((X_train, tmp), axis=-1)
    tmp = pre.make_velocity(X_test)
    X_test = np.concatenate((X_test, tmp), axis=-1)
    #X_train = pre.make_velocity(X_train)
    #X_test = pre.make_velocity(X_test)

    GAN0 = distanglingGAN()
    GAN0.train(X_train,
               Y_train,
               Y_p_train,
               X_test,
               Y_test,
               Y_p_test,
               action_start,
               n_batch=3000,
Example #3
0
    './data/json_data/action/json_data_seperate/json_data_seperate_senior/data.npy'
)
#angle = pre.make_angle(data)
data_test = load(
    './data/json_data/action/json_data_seperate/json_data_seperate_senior/data_test.npy'
)
#angle_test = pre.make_angle(data_test)
labels = load(
    './data/json_data/action/json_data_seperate/json_data_seperate_senior/labels.npy'
)
labels_test = load(
    './data/json_data/action/json_data_seperate/json_data_seperate_senior/labels_test.npy'
)
#data = pre.make_offset(data)
#data_test = pre.make_offset(data_test)
data = pre.make_velocity(data)
data_test = pre.make_velocity(data_test)

index = np.arange(data.shape[0])
np.random.shuffle(index)
data = data[index]
labels = labels[index]

data = data.reshape(data.shape[0], data.shape[1],
                    data.shape[3] * data.shape[2])
data_test = data_test.reshape(data_test.shape[0], data_test.shape[1],
                              data_test.shape[3] * data_test.shape[2])
#mix_data = mix_data.reshape(mix_data.shape[0],mix_data.shape[1],mix_data.shape[2]*mix_data.shape[3])
# data /= 3000
# data_test /= 3000
# data,data_test,labels,labels_test = train_test_split(data,labels,test_size = 0.2,random_state = 10)