Example #1
0
 def compute_num_terms():
     map = defaultdict(int)
     files = list_files_in_directory("/Users/ra-mit/data/mitdwhdata")
     total_files = len(files)
     iteration = 0
     for f in files:
         print("Processing: " + str(f))
         df = read_csv_file(f)
         columns = df.columns
         for c in columns:
             clean_tokens = tp.tokenize(c, " ")
             for ct in clean_tokens:
                 map[ct] += 1
         print(str(iteration) + "/" + str(total_files))
         iteration += 1
         #if iteration > 5:
         #    continue
         print("Size: " + str(len(map)))
         it = csv_iterator(f)
         for tuple in it:
             clean_tokens = tp.tokenize(tuple, ",")
             for ct in clean_tokens:
                 map[ct] += 1
     ordered = sorted(map.items(), key=lambda x: x[1], reverse=True)
     for el in ordered:
         print(str(el))
Example #2
0
def process_file(path, term_map=defaultdict(int)):
    print("Processing: " + str(path))
    df = ca.read_csv_file(path)
    columns = df.columns
    for c in columns:
        clean_tokens = tp.tokenize(c, " ")
        for ct in clean_tokens:
            term_map[ct] += 1

    it = ca.csv_iterator(path)
    for tuple in it:
        clean_tokens = tp.tokenize(tuple, ",")
        for ct in clean_tokens:
            term_map[ct] += 1
    return term_map
Example #3
0
def iterate_columns_with_header(path):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    for c in columns:
        clean_tokens = []
        data = dataframe[c]
        for el in data:
            if type(el) is str:
                ct = tp.tokenize(el, " ")
                for t in ct:
                    clean_tokens.append(t)
        tuple = ','.join(clean_tokens)
        col_header = []
        clean_tokens = tp.tokenize(c, " ")
        for ct in clean_tokens:
            col_header.append(ct)
        header = ','.join(clean_tokens)
        yield tuple, header
Example #4
0
def get_header(path):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    clean_tokens = []
    for c in columns:
        ct = tp.tokenize(c, " ")
        for t in ct:
            clean_tokens.append(t)
    clean_tuple = ','.join(clean_tokens)
    return clean_tuple
Example #5
0
def iterate_rows_with_header(path):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    for index, el in dataframe.iterrows():
        row = []
        for c in columns:
            value = el[c]
            if type(value) is str:
                ct = tp.tokenize(value, " ")
                for t in ct:
                    row.append(t)
        tuple = ','.join(row)
        yield tuple
Example #6
0
def iterate_rows_no_header(path, token_joiner=","):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    for index, el in dataframe.iterrows():
        row = []
        for c in columns:
            value = el[c]
            if type(value) is str:
                value = value.replace(",", ' ')
                ct = tp.tokenize(value, " ")
                tuple = token_joiner.join(ct)
                row.append(tuple)
        yield row
Example #7
0
def csv_iterator_with_header(path):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    clean_col_tokens = set()
    for c in columns:
        toks = tp.tokenize(c, " ")
        for t in toks:
            clean_col_tokens.add(t)
    for index, row in dataframe.iterrows():
        tuple_list = []
        for col in columns:
            tuple_list.append(str(row[col]))
        for c in clean_col_tokens:
            tuple_list.append(c)
        tuple = ','.join(tuple_list)
        yield tuple
Example #8
0
def iterate_columns_no_header(path, token_joiner=",", verbose=False):
    dataframe = pd.read_csv(path, encoding='latin1')
    columns = dataframe.columns
    for c in columns:
        # clean_tokens = []
        if verbose:
            print("Col: " + str(c))
        data = dataframe[c]
        col = []
        for el in data:
            if type(el) is str:
                el = el.replace(",", ' ')
                ct = tp.tokenize(el, " ")
                tuple = token_joiner.join(ct)
                col.append(tuple)
        yield col
Example #9
0
def init(path_to_data=None,
         path_to_vocab=None,
         path_to_location=None,
         path_to_model=None,
         path_to_ae_model=None,
         path_to_vae_model=None,
         path_to_fqa_model=None,
         path_to_bae_model=None,
         bae_model_epoch=None,
         encoding_mode="onehot",
         where_is_fabric=False):
    #mit_dwh_vocab = U.get_tf_dictionary(path_to_vocab)
    tf_vocab = None
    with open(path_to_vocab, 'rb') as f:
        tf_vocab = pickle.load(f)
    global vocab
    vocab = tf_vocab
    global inv_vocab
    inv_vocab = dict()
    for k, v in vocab.items():
        inv_vocab[v] = k
    location_dic = None
    if path_to_location is not None:
        with open(path_to_location + config.LOC_DICTIONARY + ".pkl", 'rb') as f:
            location_dic = pickle.load(f)
        with open(path_to_location + config.INV_LOC_DICTIONARY + ".pkl", 'rb') as f:
            inv_location_dic = pickle.load(f)
        global location_dic
        location_dic = location_dic
        global inv_location_dic
        inv_location_dic = inv_location_dic
    if path_to_model is not None:
        global model
        model = mc.load_model_from_path(path_to_model)
    global emode
    emode=encoding_mode

    if path_to_ae_model is not None:
        #ae_model = ae.load_model_from_path(path_to_ae_model)
        global encoder
        encoder = ae.load_model_from_path(path_to_ae_model + "/ae_encoder.h5")
        global decoder
        decoder = ae.load_model_from_path(path_to_ae_model + "/ae_decoder.h5")

    if path_to_fqa_model is not None:
        global fqa_model
        fqa_model = fqa.load_model_from_path(path_to_fqa_model + "fqa.h5")

    if path_to_vae_model is not None:
        global vae_encoder
        vae_encoder = vae.load_model_from_path(path_to_vae_model + "/vae_encoder.h5")
        global vae_generator
        vae_generator = vae.load_model_from_path(path_to_vae_model + "/vae_generator.h5")
    if path_to_bae_model is not None:
        if bae_model_epoch is not None:
            enc_name = "/bae_encoder" + str(bae_model_epoch) + ".h5"
            dec_name = "/bae_decoder" + str(bae_model_epoch) + ".h5"
        else:
            enc_name = "/bae_encoder.h5"
            dec_name = "/bae_decoder.h5"
        # ae_model = ae.load_model_from_path(path_to_ae_model)
        global bae_encoder
        bae_encoder = bae.load_model_from_path(path_to_bae_model + enc_name)
        global bae_decoder
        bae_decoder = bae.load_model_from_path(path_to_bae_model + dec_name)
    if where_is_fabric:
        #fabric_encoder = ae.load_model_from_path(path_to_ae_model + "/ae_encoder.h5")
        #bae_encoder = bae.load_model_from_path(path_to_ae_model + "/ae_encoder.h5")

        # compute max_v and min_v
        # max_v, min_v, mean_v, std_v = find_max_min_mean_std_per_dimension(path_to_data, bae_encoder)

        def embed_vector(v):
            x = v.toarray()[0]
            x_embedded = bae_encoder.predict(np.asarray([x]))
            #x_embedded = normalize_to_unitrange_per_dimension(x_embedded[0], max_vector=max_v, min_vector=min_v)
            #x_embedded = normalize_per_dimension(x_embedded[0], mean_vector=mean_v, std_vector=std_v)
            #v = v[0]
            #v = normalize_per_dimension(v, mean_vector=mean_v, std_vector=std_v)

            # normalization for the binary fabric
            zidx = np.where(x_embedded[0] > 0.66)
            oidx = np.where(x_embedded[0] < 0.33)
            x_embedded.fill(0.5)
            x_embedded[0][zidx[0]] = 0
            x_embedded[0][oidx[0]] = 1
            return x_embedded
            #return v

        global normalizeFVector
        normalizeFVector = NormalizeFVectors(normalize_function=embed_vector)
        global where_is_use_fabric
        where_is_use_fabric = where_is_fabric

    if encoding_mode == "onehot":
        tf_vectorizer = CountVectorizer(max_df=1., min_df=0,
                                    encoding='latin1',
                                    tokenizer=lambda text: tp.tokenize(text, " "),
                                    vocabulary=tf_vocab,
                                    stop_words='english')
        global vectorizer
        vectorizer = tp.CustomVectorizer(tf_vectorizer)
    elif encoding_mode == "index":
        idx_vectorizer = IndexVectorizer(vocab_index=vocab)
        global vectorizer
        vectorizer = tp.CustomVectorizer(idx_vectorizer)
Example #10
0
    pronouns = ["She", "He", "she", "he"]

    all_files = csv_access.list_files_in_directory(path)

    #all_files = [all_files[0]]

    for fpath in all_files:
        name = (fpath.split("/")[-1]).split(".")[0]

        pre_processed_tokens = []
        with open(fpath, "r") as f:
            relations = f.readlines()
            for r in relations:
                tokens = r.split(" ")[1::]  # remove number
                pre_tokens = tp.tokenize(" ".join(tokens), " ")  # clean stuff
                pre_tokens = [el.strip() for el in pre_tokens]
                # change pronouns by names
                for idx in range(len(pre_tokens)):
                    tk = pre_tokens[idx]
                    if tk in pronouns:
                        pre_tokens[idx] = name
                # # add name if not present already
                # if name not in pre_tokens:
                #     pre_tokens.append(name)
                if len(pre_tokens) > 0:
                    pre_processed_tokens.append(set(pre_tokens))

            # Remove near-duplicates
            idx_to_remove = set()
            for i in range(len(pre_processed_tokens)):
    for fpath in all_files:

        name = (fpath.split("/")[-1]).split(".")[0]

        # append_header(fpath, out_path, name)
        # continue

        lines = []
        print("Processing: " + str(fpath))
        df = pd.read_csv(fpath, encoding='latin1')
        for index, row in df.iterrows():
            s = row['s']
            p = row['p']
            o = row['o']
            # clean stuff
            s_tokens = tp.tokenize(s, " ", min_token_length=1)
            s_tokens = [el.strip() for el in s_tokens]
            for idx in range(len(s_tokens)):
                if s_tokens[idx] in pronouns:
                    s_tokens[idx] = name
            p_tokens = tp.tokenize(p, " ", min_token_length=1)
            p_tokens = [el.strip() for el in p_tokens]
            for idx in range(len(p_tokens)):
                if p_tokens[idx] in pronouns:
                    p_tokens[idx] = name
            o_tokens = tp.tokenize(o, " ", min_token_length=1)
            o_tokens = [el.strip() for el in o_tokens]
            for idx in range(len(o_tokens)):
                if o_tokens[idx] in pronouns:
                    o_tokens[idx] = name
            clean_s = " ".join(s_tokens)
Example #12
0
            it = csv_iterator(f)
            for tuple in it:
                clean_tokens = tp.tokenize(tuple, ",")
                for ct in clean_tokens:
                    map[ct] += 1
        ordered = sorted(map.items(), key=lambda x: x[1], reverse=True)
        for el in ordered:
            print(str(el))

    files = list_files_in_directory("/Users/ra-mit/data/mitdwhdata")
    for f in files:
        print(str(f))

    example = files[0]

    print(example)

    it = csv_iterator_with_header(example)

    from preprocessing import text_processor as tp

    for tuple in it:
        clean_tokens = tp.tokenize(tuple, ",")
        print(str(clean_tokens))

    # print("Computing number of terms...")
    #
    # compute_num_terms()
    #
    # print("Computing number of terms...OK")