def main(n_z, n_hidden, dataset, seed, comment, gfx=True): # Initialize logdir #--------------------- # Setasouto: # Create the directory to save the outputs files and log. #--------------------- import time logdir = 'results/gpulearn_z_x_' + dataset + '_' + str(n_z) + '-' + str( n_hidden) + '_' + comment + '_' + str(int(time.time())) + '/' if not os.path.exists(logdir): os.makedirs(logdir) print('logdir:', logdir) print('gpulearn_z_x', n_z, n_hidden, dataset, seed) with open(logdir + 'hook.txt', 'a') as f: print(f, 'learn_z_x', n_z, n_hidden, dataset, seed) np.random.seed(seed) gfx_freq = 1 weight_decay = 0 f_enc, f_dec = lambda x: x, lambda x: x # Init data if dataset == 'mnist': import anglepy.data.mnist as mnist # MNIST size = 28 train_x, train_y, valid_x, valid_y, test_x, test_y = mnist.load_numpy( size) x = {'x': train_x.astype(np.float32)} x_valid = {'x': valid_x.astype(np.float32)} x_test = {'x': test_x.astype(np.float32)} L_valid = 1 dim_input = (size, size) n_x = size * size type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 50000 n_batch = 1000 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch) / n_train if dataset == 'mnist_binarized': import anglepy.data.mnist_binarized as mnist_binarized # MNIST train_x, valid_x, test_x = mnist_binarized.load_numpy(28) x = {'x': np.hstack((train_x, valid_x)).astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 dim_input = (28, 28) n_x = 28 * 28 n_y = 10 type_qz = 'gaussianmarg' type_pz = 'mog' nonlinear = 'rectlin' type_px = 'bernoulli' n_train = 60000 n_batch = 1000 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / n_train elif dataset == 'freyface': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy() np.random.shuffle(train_x) x = {'x': train_x.T[:, 0:n_train]} x_valid = {'x': train_x.T[:, n_train:]} L_valid = 1 dim_input = (28, 20) n_x = 20 * 28 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'bounded01' nonlinear = 'tanh' #tanh works better with freyface #'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / n_train elif dataset == 'freyface_pca': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) f_enc, f_dec, _ = pp.PCA(train_x, 0.99) train_x = f_enc(train_x) x = {'x': train_x[:, 0:n_train].astype(np.float32)} x_valid = {'x': train_x[:, n_train:].astype(np.float32)} L_valid = 1 dim_input = (28, 20) n_x = train_x.shape[0] type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'freyface_bernoulli': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) x = {'x': train_x[:, 0:n_train].astype(np.float32)} x_valid = {'x': train_x[:, n_train:].astype(np.float32)} L_valid = 1 dim_input = (28, 20) n_x = train_x.shape[0] type_pz = 'gaussianmarg' type_px = 'bernoulli' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'norb': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False byteToFloat = False bernoulli_x = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'norb_pca': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) f_enc, f_dec, _ = pp.PCA(train_x, 0.999) #f_enc, f_dec, _ = pp.normalize_random(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'norb_normalized': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) #f_enc, f_dec, _ = pp.PCA(train_x, 0.99) #f_enc, f_dec, _ = pp.normalize_random(train_x) f_enc, f_dec, _ = pp.normalize(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'svhn': # SVHN dataset import anglepy.data.svhn as svhn size = 32 train_x, train_y, test_x, test_y = svhn.load_numpy( False, binarize_y=True) #norb.load_resized(size, binarize_y=True) extra_x, extra_y = svhn.load_numpy_extra(False, binarize_y=True) x = { 'x': np.hstack((train_x, extra_x)), 'y': np.hstack((train_y, extra_y)) } ndict.shuffleCols(x) print('Performing PCA, can take a few minutes... ', f_enc, f_dec, pca_params=pp.PCA(x['x'][:, :10000], cutoff=600, toFloat=True)) ndict.savez(pca_params, logdir + 'pca_params') print('Done.') n_y = 10 x = {'x': f_enc(x['x']).astype(np.float32)} x_valid = {'x': f_enc(test_x).astype(np.float32)} L_valid = 1 n_x = x['x'].shape[0] dim_input = (size, size) n_batch = 5000 colorImg = True bernoulli_x = False byteToFloat = False type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' elif dataset == 'hyper': # Hyperspectral images: # Import 1 file of the dataset # TODO: import more files: Edit hyperspectralData.py #I added the hyperspectralData file in the anglepy library from hyperspectralData import HyperspectralData train_x, train_y, valid_x, valid_y, test_x, test_y = HyperspectralData( ).load_numpy(100000) #Dim input: How it has to be written like an image. We said that is: dim_input = (67, 4) n_x = train_x.shape[0] #Dimension of our data vector. x = {'x': train_x.astype(np.float32)} x_valid = {'x': valid_x.astype(np.float32)} x_test = {'x': test_x.astype(np.float32)} L_valid = 1 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = train_x.shape[1] n_batch = 1000 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / n_train #Write the hyperparameters used: with open(logdir + 'AA_hyperparameters.txt', 'w') as file: file.write("L_valid: " + str(L_valid) + '\n') file.write("type_qz: " + type_qz + '\n') file.write("type_pz: " + type_pz + '\n') file.write("Nonlinear: " + nonlinear + '\n') file.write("type_px: " + type_px + '\n') file.write("n_train: " + str(n_train) + '\n') file.write("n_batch: " + str(n_batch) + '\n') file.write("colorImg: " + str(colorImg) + '\n') file.write("bernoulli_x: " + str(bernoulli_x) + '\n') file.write("byteToFloat: " + str(byteToFloat) + '\n') file.close() # Write the headers for the csv file output: with open(logdir + 'AA_results.txt', 'w') as file: # Like a csv file: file.write("Step" + ',' + "TimeElapsed" + ',' + "LowerboundMinibatch" + ',' + "LowerboundValid" + ',' + "NumStepNotImproving" + '\n') file.close() # Construct model from anglepy.models import GPUVAE_Z_X updates = get_adam_optimizer(learning_rate=3e-4, weight_decay=weight_decay) model = GPUVAE_Z_X(updates, n_x, n_hidden, n_z, n_hidden[::-1], nonlinear, nonlinear, type_px, type_qz=type_qz, type_pz=type_pz, prior_sd=100, init_sd=1e-3) #--------------- # SetaSouto: # The [::-1] is to reverse the list. #--------------- if False: #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412689061/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412676966/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412695481/' #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412695455/' #dir = '/Users/dpkingma/results/gpulearn_z_x_svhn_pca_300-(500, 500)__1413904756/' dir = '/home/ubuntu/results/gpulearn_z_x_mnist_50-[500, 500]__1414259423/' w = ndict.loadz(dir + 'w_best.ndict.tar.gz') v = ndict.loadz(dir + 'v_best.ndict.tar.gz') ndict.set_value(model.w, w) ndict.set_value(model.v, v) # Some statistics for optimization ll_valid_stats = [-1e99, 0] # Progress hook def hook(epoch, t, ll): ''' Documented by SetaSouto, may contains errors. :epoch: Number of the current step. :t: Time elapsed from the beginning. :ll: Loglikelihood (?). ''' if epoch % 10 != 0: return ll_valid, _ = model.est_loglik(x_valid, n_samples=L_valid, n_batch=n_batch, byteToFloat=byteToFloat) # Log ndict.savez(ndict.get_value(model.v), logdir + 'v') ndict.savez(ndict.get_value(model.w), logdir + 'w') if ll_valid > ll_valid_stats[0]: ll_valid_stats[0] = ll_valid ll_valid_stats[1] = 0 ndict.savez(ndict.get_value(model.v), logdir + 'v_best') ndict.savez(ndict.get_value(model.w), logdir + 'w_best') else: ll_valid_stats[1] += 1 # Stop when not improving validation set performance in 100 iterations if ll_valid_stats[1] > 100: print("Finished") with open(logdir + 'hook.txt', 'a') as f: print(f, "Finished") exit() # This will be showing the current results and write them in a file: with open(logdir + 'AA_results.txt', 'a') as file: # Like a csv file: file.write( str(epoch) + ',' + str(t) + ',' + str(ll) + ',' + str(ll_valid) + ',' + str(ll_valid_stats[1]) + '\n') file.close() print("-------------------------") print("Current results:") print(" ") print("Step:", epoch) print("Time elapsed:", t) print("Loglikelihood minibatch:", ll) print("Loglikelihood validSet:", ll_valid) print("N not improving:", ll_valid_stats[1]) #print(epoch, t, ll, ll_valid, ll_valid_stats) #This print the file where are written the stats. #with open(logdir+'hook.txt', 'a') as f: #print(f, epoch, t, ll, ll_valid, ll_valid_stats) # Graphics if gfx and epoch % gfx_freq == 0: #tail = '.png' tail = '-' + str(epoch) + '.png' v = {i: model.v[i].get_value() for i in model.v} w = {i: model.w[i].get_value() for i in model.w} if 'pca' not in dataset and 'random' not in dataset and 'normalized' not in dataset: if 'w0' in v: image = paramgraphics.mat_to_img(f_dec(v['w0'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir + 'q_w0' + tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_w' + tail, 'PNG') if 'out_unif' in w: image = paramgraphics.mat_to_img(f_dec( w['out_unif'].reshape((-1, 1))), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_unif' + tail, 'PNG') if n_z == 2: n_width = 10 import scipy.stats z = {'z': np.zeros((2, n_width**2))} for i in range(0, n_width): for j in range(0, n_width): z['z'][0, n_width * i + j] = scipy.stats.norm.ppf( float(i) / n_width + 0.5 / n_width) z['z'][1, n_width * i + j] = scipy.stats.norm.ppf( float(j) / n_width + 0.5 / n_width) x, _, _z = model.gen_xz({}, z, n_width**2) if dataset == 'mnist': x = 1 - _z['x'] image = paramgraphics.mat_to_img(f_dec(_z['x']), dim_input) image.save(logdir + '2dmanifold' + tail, 'PNG') else: _x, _, _z_confab = model.gen_xz({}, {}, n_batch=144) x_samples = _z_confab['x'] image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg) image.save(logdir + 'samples' + tail, 'PNG') #x_samples = _x['x'] #image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) #image.save(logdir+'samples2'+tail, 'PNG') else: # Model with preprocessing if 'w0' in v: image = paramgraphics.mat_to_img(f_dec(v['w0'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir + 'q_w0' + tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_w' + tail, 'PNG') _x, _, _z_confab = model.gen_xz({}, {}, n_batch=144) x_samples = f_dec(_z_confab['x']) x_samples = np.minimum(np.maximum(x_samples, 0), 1) image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) image.save(logdir + 'samples' + tail, 'PNG') # Optimize #SFO dostep = epoch_vae_adam(model, x, n_batch=n_batch, bernoulli_x=bernoulli_x, byteToFloat=byteToFloat) loop_va(dostep, hook) pass
def main(n_z, n_hidden, dataset, seed, comment, gfx=True): # Initialize logdir import time logdir = 'results/gpulearn_z_x_' + dataset + '_' + str(n_z) + '-' + str( n_hidden) + '_' + comment + '_' + str(int(time.time())) + '/' if not os.path.exists(logdir): os.makedirs(logdir) print 'logdir:', logdir print 'gpulearn_z_x', n_z, n_hidden, dataset, seed with open(logdir + 'hook.txt', 'a') as f: print >> f, 'learn_z_x', n_z, n_hidden, dataset, seed np.random.seed(seed) gfx_freq = 1 weight_decay = 0 f_enc, f_dec = lambda x: x, lambda x: x # Init data if dataset == 'mnist': import anglepy.data.mnist as mnist # MNIST size = 28 train_x, train_y, valid_x, valid_y, test_x, test_y = mnist.load_numpy( size) x = {'x': train_x.astype(np.float32)} x_valid = {'x': valid_x.astype(np.float32)} x_test = {'x': test_x.astype(np.float32)} L_valid = 1 dim_input = (size, size) n_x = size * size type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 50000 n_batch = 1000 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch) / n_train if dataset == 'mnist_binarized': import anglepy.data.mnist_binarized as mnist_binarized # MNIST train_x, valid_x, test_x = mnist_binarized.load_numpy(28) x = {'x': np.hstack((train_x, valid_x)).astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 dim_input = (28, 28) n_x = 28 * 28 n_y = 10 type_qz = 'gaussianmarg' type_pz = 'mog' nonlinear = 'rectlin' type_px = 'bernoulli' n_train = 60000 n_batch = 1000 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / n_train elif dataset == 'freyface': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy() np.random.shuffle(train_x) x = {'x': train_x.T[:, 0:n_train]} x_valid = {'x': train_x.T[:, n_train:]} L_valid = 1 dim_input = (28, 20) n_x = 20 * 28 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'bounded01' nonlinear = 'tanh' #tanh works better with freyface #'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / n_train elif dataset == 'freyface_pca': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) f_enc, f_dec, _ = pp.PCA(train_x, 0.99) train_x = f_enc(train_x) x = {'x': train_x[:, 0:n_train].astype(np.float32)} x_valid = {'x': train_x[:, n_train:].astype(np.float32)} L_valid = 1 dim_input = (28, 20) n_x = train_x.shape[0] type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'freyface_bernoulli': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) x = {'x': train_x[:, 0:n_train].astype(np.float32)} x_valid = {'x': train_x[:, n_train:].astype(np.float32)} L_valid = 1 dim_input = (28, 20) n_x = train_x.shape[0] type_pz = 'gaussianmarg' type_px = 'bernoulli' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'norb': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False byteToFloat = False bernoulli_x = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'norb_pca': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) f_enc, f_dec, _ = pp.PCA(train_x, 0.999) #f_enc, f_dec, _ = pp.normalize_random(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'norb_normalized': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) #f_enc, f_dec, _ = pp.PCA(train_x, 0.99) #f_enc, f_dec, _ = pp.normalize_random(train_x) f_enc, f_dec, _ = pp.normalize(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size, size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch) / train_x.shape[1] elif dataset == 'svhn': # SVHN dataset import anglepy.data.svhn as svhn size = 32 train_x, train_y, test_x, test_y = svhn.load_numpy( False, binarize_y=True) #norb.load_resized(size, binarize_y=True) extra_x, extra_y = svhn.load_numpy_extra(False, binarize_y=True) x = { 'x': np.hstack((train_x, extra_x)), 'y': np.hstack((train_y, extra_y)) } ndict.shuffleCols(x) print 'Performing PCA, can take a few minutes... ', f_enc, f_dec, pca_params = pp.PCA(x['x'][:, :10000], cutoff=600, toFloat=True) ndict.savez(pca_params, logdir + 'pca_params') print 'Done.' n_y = 10 x = {'x': f_enc(x['x']).astype(np.float32)} x_valid = {'x': f_enc(test_x).astype(np.float32)} L_valid = 1 n_x = x['x'].shape[0] dim_input = (size, size) n_batch = 5000 colorImg = True bernoulli_x = False byteToFloat = False type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' # Construct model from anglepy.models import GPUVAE_Z_X updates = get_adam_optimizer(learning_rate=3e-4, weight_decay=weight_decay) model = GPUVAE_Z_X(updates, n_x, n_hidden, n_z, n_hidden[::-1], nonlinear, nonlinear, type_px, type_qz=type_qz, type_pz=type_pz, prior_sd=100, init_sd=1e-3) if False: #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412689061/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412676966/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412695481/' #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412695455/' #dir = '/Users/dpkingma/results/gpulearn_z_x_svhn_pca_300-(500, 500)__1413904756/' dir = '/home/ubuntu/results/gpulearn_z_x_mnist_50-[500, 500]__1414259423/' w = ndict.loadz(dir + 'w_best.ndict.tar.gz') v = ndict.loadz(dir + 'v_best.ndict.tar.gz') ndict.set_value(model.w, w) ndict.set_value(model.v, v) # Some statistics for optimization ll_valid_stats = [-1e99, 0] # Progress hook def hook(epoch, t, ll): if epoch % 10 != 0: return ll_valid, _ = model.est_loglik(x_valid, n_samples=L_valid, n_batch=n_batch, byteToFloat=byteToFloat) # Log ndict.savez(ndict.get_value(model.v), logdir + 'v') ndict.savez(ndict.get_value(model.w), logdir + 'w') if ll_valid > ll_valid_stats[0]: ll_valid_stats[0] = ll_valid ll_valid_stats[1] = 0 ndict.savez(ndict.get_value(model.v), logdir + 'v_best') ndict.savez(ndict.get_value(model.w), logdir + 'w_best') else: ll_valid_stats[1] += 1 # Stop when not improving validation set performance in 100 iterations if ll_valid_stats[1] > 1000: print "Finished" with open(logdir + 'hook.txt', 'a') as f: print >> f, "Finished" exit() print epoch, t, ll, ll_valid, ll_valid_stats with open(logdir + 'hook.txt', 'a') as f: print >> f, epoch, t, ll, ll_valid, ll_valid_stats # Graphics if gfx and epoch % gfx_freq == 0: #tail = '.png' tail = '-' + str(epoch) + '.png' v = {i: model.v[i].get_value() for i in model.v} w = {i: model.w[i].get_value() for i in model.w} if 'pca' not in dataset and 'random' not in dataset and 'normalized' not in dataset: if 'w0' in v: image = paramgraphics.mat_to_img(f_dec(v['w0'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir + 'q_w0' + tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_w' + tail, 'PNG') if 'out_unif' in w: image = paramgraphics.mat_to_img(f_dec( w['out_unif'].reshape((-1, 1))), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_unif' + tail, 'PNG') if n_z == 2: n_width = 10 import scipy.stats z = {'z': np.zeros((2, n_width**2))} for i in range(0, n_width): for j in range(0, n_width): z['z'][0, n_width * i + j] = scipy.stats.norm.ppf( float(i) / n_width + 0.5 / n_width) z['z'][1, n_width * i + j] = scipy.stats.norm.ppf( float(j) / n_width + 0.5 / n_width) x, _, _z = model.gen_xz({}, z, n_width**2) if dataset == 'mnist': x = 1 - _z['x'] image = paramgraphics.mat_to_img(f_dec(_z['x']), dim_input) image.save(logdir + '2dmanifold' + tail, 'PNG') else: _x, _, _z_confab = model.gen_xz({}, {}, n_batch=144) x_samples = _z_confab['x'] image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg) image.save(logdir + 'samples' + tail, 'PNG') #x_samples = _x['x'] #image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) #image.save(logdir+'samples2'+tail, 'PNG') else: # Model with preprocessing if 'w0' in v: image = paramgraphics.mat_to_img(f_dec(v['w0'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir + 'q_w0' + tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_w' + tail, 'PNG') _x, _, _z_confab = model.gen_xz({}, {}, n_batch=144) x_samples = f_dec(_z_confab['x']) x_samples = np.minimum(np.maximum(x_samples, 0), 1) image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) image.save(logdir + 'samples' + tail, 'PNG') # Optimize #SFO dostep = epoch_vae_adam(model, x, n_batch=n_batch, bernoulli_x=bernoulli_x, byteToFloat=byteToFloat) loop_va(dostep, hook) pass
def main(n_z, n_hidden, dataset, seed, gfx=True, _size=None): '''Learn a variational auto-encoder with generative model p(x,y,z)=p(y)p(z)p(x|y,z). x and y are (always) observed. I.e. this cannot be used for semi-supervised learning ''' assert (type(n_hidden) == tuple or type(n_hidden) == list) assert type(n_z) == int assert isinstance(dataset, str) print('gpulearn_yz_x', n_z, n_hidden, dataset, seed) import time logdir = 'results/gpulearn_yz_x_' + dataset + '_' + str(n_z) + '-' + str( n_hidden) + '-' + str(int(time.time())) + '/' if not os.path.exists(logdir): os.makedirs(logdir) print('logdir:', logdir) np.random.seed(seed) # Init data if dataset == 'mnist': ''' What works well: 100-2-100 (Generated digits stay bit shady) 1000-2-1000 (Needs pretty long training) ''' import anglepy.data.mnist as mnist # MNIST size = 28 train_x, train_y, valid_x, valid_y, test_x, test_y = mnist.load_numpy( size, binarize_y=True) f_enc, f_dec = lambda x: x, lambda x: x x = { 'x': train_x[:, :].astype(np.float32), 'y': train_y[:, :].astype(np.float32) } x_valid = { 'x': valid_x.astype(np.float32), 'y': valid_y.astype(np.float32) } L_valid = 1 dim_input = (size, size) n_x = size * size n_y = 10 n_batch = 1000 colorImg = False bernoulli_x = True byteToFloat = False mosaic_w = 5 mosaic_h = 2 type_px = 'bernoulli' elif dataset == 'norb': # resized NORB dataset, reshuffled import anglepy.data.norb as norb size = _size #48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) _x = {'x': train_x, 'y': train_y} ndict.shuffleCols(_x) train_x = _x['x'] train_y = _x['y'] # Do PCA f_enc, f_dec, pca_params = pp.PCA(_x['x'][:, :10000], cutoff=2000, toFloat=False) ndict.savez(pca_params, logdir + 'pca_params') x = { 'x': f_enc(train_x).astype(np.float32), 'y': train_y.astype(np.float32) } x_valid = { 'x': f_enc(test_x).astype(np.float32), 'y': test_y.astype(np.float32) } L_valid = 1 n_x = x['x'].shape[0] n_y = 5 dim_input = (size, size) n_batch = 1000 #23400/900 = 27 colorImg = False bernoulli_x = False byteToFloat = False mosaic_w = 5 mosaic_h = 1 type_px = 'gaussian' elif dataset == 'norb_instances': # resized NORB dataset with the instances as classes import anglepy.data.norb2 as norb2 size = _size #48 x, y = norb2.load_numpy_subclasses(size, binarize_y=True) _x = {'x': x, 'y': y} ndict.shuffleCols(_x) # Do pre=processing if True: # Works f_enc, f_dec, pca_params = pp.PCA(_x['x'][:, :10000], cutoff=600, global_sd=True, toFloat=True) ndict.savez(pca_params, logdir + 'pca_params') elif False: # Doesn't work f_enc, f_dec, pp_params = pp.normalize_noise(_x['x'][:, :50000], noise_sd=0.01, global_sd=True, toFloat=True) else: # Doesn't work f_enc, f_dec, params = pp.normalize_random(x=x[:, :10000], global_sd=True, toFloat=True) ndict.savez(params, logdir + 'normalize_random_params') n_valid = 5000 x = { 'x': f_enc(_x['x'][:, :-n_valid]).astype(np.float32), 'y': _x['y'][:, :-n_valid].astype(np.float32) } x_valid = { 'x': f_enc(_x['x'][:, :n_valid]).astype(np.float32), 'y': _x['y'][:, :n_valid].astype(np.float32) } L_valid = 1 n_x = x['x'].shape[0] n_y = 50 dim_input = (size, size) n_batch = 5000 #23400/900 = 27 colorImg = False bernoulli_x = False byteToFloat = False mosaic_w = 5 mosaic_h = 1 type_px = 'gaussian' elif dataset == 'svhn': # SVHN dataset import anglepy.data.svhn as svhn size = 32 train_x, train_y, test_x, test_y = svhn.load_numpy( False, binarize_y=True) #norb.load_resized(size, binarize_y=True) extra_x, extra_y = svhn.load_numpy_extra(False, binarize_y=True) x = { 'x': np.hstack((train_x, extra_x)), 'y': np.hstack((train_y, extra_y)) } ndict.shuffleCols(x) #f_enc, f_dec, (x_sd, x_mean) = pp.preprocess_normalize01(train_x, True) f_enc, f_dec, pca_params = pp.PCA(x['x'][:, :10000], cutoff=1000, toFloat=True) ndict.savez(pca_params, logdir + 'pca_params') n_y = 10 x = { 'x': f_enc(x['x']).astype(np.float32), 'y': x['y'].astype(np.float32) } x_valid = { 'x': f_enc(test_x).astype(np.float32), 'y': test_y.astype(np.float32) } L_valid = 1 n_x = x['x'].shape[0] dim_input = (size, size) n_batch = 5000 colorImg = True bernoulli_x = False byteToFloat = False mosaic_w = 5 mosaic_h = 2 type_px = 'gaussian' # Init model n_hidden_q = n_hidden n_hidden_p = n_hidden from anglepy.models import GPUVAE_YZ_X updates = get_adam_optimizer(alpha=3e-4, beta1=0.9, beta2=0.999, weight_decay=0) model = GPUVAE_YZ_X(updates, n_x, n_y, n_hidden_q, n_z, n_hidden_p[::-1], 'softplus', 'softplus', type_px=type_px, type_qz='gaussianmarg', type_pz='gaussianmarg', prior_sd=1, uniform_y=True) if False: dir = '/home/ubuntu/results/gpulearn_yz_x_svhn_300-(500, 500)-1414094291/' dir = '/home/ubuntu/results/gpulearn_yz_x_svhn_300-(500, 500)-1414163488/' w = ndict.loadz(dir + 'w_best.ndict.tar.gz') v = ndict.loadz(dir + 'v_best.ndict.tar.gz') ndict.set_value(model.w, w) ndict.set_value(model.v, v) # Some statistics for optimization ll_valid_stats = [-1e99, 0] # Fixed sample for visualisation z_sample = { 'z': np.repeat(np.random.standard_normal(size=(n_z, 12)), 12, axis=1).astype(np.float32) } y_sample = { 'y': np.tile( np.random.multinomial(1, [1. / n_y] * n_y, size=12).T, (1, 12)) } # Progress hook def hook(epoch, t, ll): if epoch % 10 != 0: return ll_valid, _ = model.est_loglik(x_valid, n_samples=L_valid, n_batch=n_batch, byteToFloat=byteToFloat) if math.isnan(ll_valid): print("NaN detected. Reverting to saved best parameters") ndict.set_value(model.v, ndict.loadz(logdir + 'v.ndict.tar.gz')) ndict.set_value(model.w, ndict.loadz(logdir + 'w.ndict.tar.gz')) return if ll_valid > ll_valid_stats[0]: ll_valid_stats[0] = ll_valid ll_valid_stats[1] = 0 ndict.savez(ndict.get_value(model.v), logdir + 'v_best') ndict.savez(ndict.get_value(model.w), logdir + 'w_best') else: ll_valid_stats[1] += 1 # Stop when not improving validation set performance in 100 iterations if False and ll_valid_stats[1] > 1000: print("Finished") with open(logdir + 'hook.txt', 'a') as f: print("Finished", file=f) exit() # Log ndict.savez(ndict.get_value(model.v), logdir + 'v') ndict.savez(ndict.get_value(model.w), logdir + 'w') print(epoch, t, ll, ll_valid) with open(logdir + 'hook.txt', 'a') as f: print(t, ll, ll_valid, file=f) if gfx: # Graphics v = {i: model.v[i].get_value() for i in model.v} w = {i: model.w[i].get_value() for i in model.w} tail = '-' + str(epoch) + '.png' image = paramgraphics.mat_to_img(f_dec(v['w0x'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir + 'q_w0x' + tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir + 'out_w' + tail, 'PNG') _x = {'y': np.random.multinomial(1, [1. / n_y] * n_y, size=144).T} _, _, _z_confab = model.gen_xz(_x, {}, n_batch=144) image = paramgraphics.mat_to_img(f_dec(_z_confab['x']), dim_input, colorImg=colorImg) image.save(logdir + 'samples' + tail, 'PNG') _, _, _z_confab = model.gen_xz(y_sample, z_sample, n_batch=144) image = paramgraphics.mat_to_img(f_dec(_z_confab['x']), dim_input, colorImg=colorImg) image.save(logdir + 'samples_fixed' + tail, 'PNG') if n_z == 2: import Image import ImageFont import ImageDraw n_width = 10 submosaic_offset = 15 submosaic_width = (dim_input[1] * n_width) submosaic_height = (dim_input[0] * n_width) mosaic = Image.new( "RGB", (submosaic_width * mosaic_w, submosaic_offset + submosaic_height * mosaic_h)) for digit in range(0, n_y): if digit >= mosaic_h * mosaic_w: continue _x = {} n_batch_plot = n_width * n_width _x['y'] = np.zeros((n_y, n_batch_plot)) _x['y'][digit, :] = 1 _z = {'z': np.zeros((2, n_width**2))} for i in range(0, n_width): for j in range(0, n_width): _z['z'][0, n_width * i + j] = scipy.stats.norm.ppf( float(i) / n_width + 0.5 / n_width) _z['z'][1, n_width * i + j] = scipy.stats.norm.ppf( float(j) / n_width + 0.5 / n_width) _x, _, _z_confab = model.gen_xz(_x, _z, n_batch=n_batch_plot) x_samples = _z_confab['x'] image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg, tile_spacing=(0, 0)) #image.save(logdir+'samples_digit_'+str(digit)+'_'+tail, 'PNG') mosaic_x = (digit % mosaic_w) * submosaic_width mosaic_y = submosaic_offset + int( digit / mosaic_w) * submosaic_height mosaic.paste(image, (mosaic_x, mosaic_y)) draw = ImageDraw.Draw(mosaic) draw.text((1, 1), "Epoch #" + str(epoch) + " Loss=" + str(int(ll))) #plt.savefig(logdir+'mosaic'+tail, format='PNG') mosaic.save(logdir + 'mosaic' + tail, 'PNG') #x_samples = _x['x'] #image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg) #image.save(logdir+'samples2'+tail, 'PNG') # Optimize dostep = epoch_vae_adam(model, x, n_batch=n_batch, bernoulli_x=bernoulli_x, byteToFloat=byteToFloat) loop_va(dostep, hook) pass