def _copy_initial_state_into_model(options:Options, current_state:SimulationState, md:EgretModel): for g, g_dict in md.elements('generator', generator_type='thermal'): g_dict['initial_status'] = current_state.get_initial_generator_state(g) g_dict['initial_p_output'] = current_state.get_initial_power_generated(g) for s,s_dict in md.elements('storage'): s_dict['initial_state_of_charge'] = current_state.get_initial_state_of_charge(s)
def create_deterministic_ruc(options, data_provider:DataProvider, this_date, this_hour, current_state:SimulationState, ruc_horizon, use_next_day_in_ruc): ruc_every_hours = options.ruc_every_hours start_day = this_date start_time = datetime.datetime.combine(start_day, datetime.time(hour=this_hour)) # Create a new model md = data_provider.get_initial_forecast_model(options, ruc_horizon, 60) initial_ruc = current_state is None or current_state.timestep_count == 0 # Populate the T0 data if initial_ruc: data_provider.populate_initial_state_data(options, md) else: _copy_initial_state_into_model(options, current_state, md) # Populate forecasts infer_second_day = (not use_next_day_in_ruc) forecast_request_count = 24 if infer_second_day else ruc_horizon data_provider.populate_with_forecast_data(options, start_time, forecast_request_count, 60, md) # Make some near-term forecasts more accurate ruc_delay = -(options.ruc_execution_hour%(-options.ruc_every_hours)) if options.ruc_prescience_hour > ruc_delay + 1: improved_hour_count = options.ruc_prescience_hour - ruc_delay - 1 for forecastable, forecast in get_forecastables(md): actuals = current_state.get_future_actuals(forecastable) for t in range(0, improved_hour_count): forecast_portion = (ruc_delay+t)/options.ruc_prescience_hour actuals_portion = 1-forecast_portion forecast[t] = forecast_portion*forecast[t] + actuals_portion*actuals[t] if infer_second_day: for infer_type, vals in get_forecastables_with_inferral_method(md): for t in range(24, ruc_horizon): if infer_type == InferralType.COPY_FIRST_DAY: # Copy from first 24 to second 24 vals[t] = vals[t-24] else: # Repeat the final value from day 1 vals[t] = vals[23] # Ensure the reserve requirement is satisfied _ensure_reserve_factor_honored(options, md, range(ruc_horizon)) _ensure_contingencies_monitored(options, md, initial_ruc) return md
def create_deterministic_ruc(options, data_provider:DataProvider, this_date, this_hour, current_state:SimulationState, ruc_horizon, use_next_day_in_ruc): ruc_every_hours = options.ruc_every_hours start_day = this_date start_time = datetime.datetime.combine(start_day, datetime.time(hour=this_hour)) # Create a new model md = data_provider.get_initial_model(options, ruc_horizon, 60) # Populate the T0 data if current_state is None or current_state.timestep_count == 0: data_provider.populate_initial_state_data(options, start_day, md) else: _copy_initial_state_into_model(options, current_state, md) # Populate forecasts copy_first_day = (not use_next_day_in_ruc) and (this_hour != 0) forecast_request_count = 24 if copy_first_day else ruc_horizon data_provider.populate_with_forecast_data(options, start_time, forecast_request_count, 60, md) # Make some near-term forecasts more accurate ruc_delay = -(options.ruc_execution_hour%(-options.ruc_every_hours)) if options.ruc_prescience_hour > ruc_delay + 1: improved_hour_count = options.ruc_prescience_hour - ruc_delay - 1 for forecast, actuals in zip(get_forecastables(md), current_state.get_future_actuals()): for t in range(0, improved_hour_count): forecast_portion = (ruc_delay+t)/options.ruc_prescience_hour actuals_portion = 1-forecast_portion forecast[t] = forecast_portion*forecast[t] + actuals_portion*actuals[t] # Ensure the reserve requirement is satisfied _ensure_reserve_factor_honored(options, md, range(forecast_request_count)) # Copy from first 24 to second 24, if necessary if copy_first_day: for vals, in get_forecastables(md): for t in range(24, ruc_horizon): vals[t] = vals[t-24] return md
def create_sced_instance(data_provider:DataProvider, current_state:SimulationState, options, sced_horizon, forecast_error_method = ForecastErrorMethod.PRESCIENT ): ''' Create a deterministic economic dispatch instance, given current forecasts and commitments. ''' assert current_state is not None sced_md = data_provider.get_initial_actuals_model(options, sced_horizon, current_state.minutes_per_step) # Set initial state _copy_initial_state_into_model(options, current_state, sced_md) ################################################################################ # initialize the demand and renewables data, based on the forecast error model # ################################################################################ if forecast_error_method is ForecastErrorMethod.PRESCIENT: # Warning: This method can see into the future! for forecastable, sced_data in get_forecastables(sced_md): future = current_state.get_future_actuals(forecastable) for t in range(sced_horizon): sced_data[t] = future[t] else: # persistent forecast error: # Go through each time series that can be forecasted for forecastable, sced_data in get_forecastables(sced_md): forecast = current_state.get_forecasts(forecastable) # the first value is, by definition, the actual. sced_data[0] = current_state.get_current_actuals(forecastable) # Find how much the first forecast was off from the actual, as a fraction of # the forecast. For all subsequent times, adjust the forecast by the same fraction. if forecast[0] == 0.0: forecast_error_ratio = 0.0 else: forecast_error_ratio = sced_data[0] / forecast[0] for t in range(1, sced_horizon): sced_data[t] = forecast[t] * forecast_error_ratio _ensure_reserve_factor_honored(options, sced_md, range(sced_horizon)) _ensure_contingencies_monitored(options, sced_md) # Set generator commitments & future state for g, g_dict in sced_md.elements(element_type='generator', generator_type='thermal'): # Start by preparing an empty array of the correct size for each generator fixed_commitment = [None]*sced_horizon g_dict['fixed_commitment'] = _time_series_dict(fixed_commitment) # Now fill it in with data for t in range(sced_horizon): fixed_commitment[t] = current_state.get_generator_commitment(g,t) # Look as far into the future as we can for future startups / shutdowns last_commitment = fixed_commitment[-1] for t in range(sced_horizon, current_state.timestep_count): this_commitment = current_state.get_generator_commitment(g,t) if (this_commitment - last_commitment) > 0.5: # future startup future_status_time_steps = ( t - sced_horizon + 1 ) break elif (last_commitment - this_commitment) > 0.5: # future shutdown future_status_time_steps = -( t - sced_horizon + 1 ) break else: # no break future_status_time_steps = 0 g_dict['future_status'] = (current_state.minutes_per_step/60.) * future_status_time_steps if not options.no_startup_shutdown_curves: minutes_per_step = current_state.minutes_per_step for g, g_dict in sced_md.elements(element_type='generator', generator_type='thermal'): if 'startup_curve' in g_dict: continue ramp_up_rate_sced = g_dict['ramp_up_60min'] * minutes_per_step/60. # this rarely happens, e.g., synchronous condenser if ramp_up_rate_sced == 0: continue if 'startup_capacity' not in g_dict: sced_startup_capacity = _calculate_sced_startup_shutdown_capacity_from_none( g_dict['p_min'], ramp_up_rate_sced) else: sced_startup_capacity = _calculate_sced_startup_shutdown_capacity_from_existing( g_dict['startup_capacity'], g_dict['p_min'], minutes_per_step) g_dict['startup_curve'] = [ sced_startup_capacity - i*ramp_up_rate_sced \ for i in range(1,int(math.ceil(sced_startup_capacity/ramp_up_rate_sced))) ] for g, g_dict in sced_md.elements(element_type='generator', generator_type='thermal'): if 'shutdown_curve' in g_dict: continue ramp_down_rate_sced = g_dict['ramp_down_60min'] * minutes_per_step/60. # this rarely happens, e.g., synchronous condenser if ramp_down_rate_sced == 0: continue # compute a new shutdown curve if we go from "on" to "off" if g_dict['initial_status'] > 0 and g_dict['fixed_commitment']['values'][0] == 0: power_t0 = g_dict['initial_p_output'] # if we end up using a historical curve, it's important # for the time-horizons to match, particularly since this # function is also used to create long-horizon look-ahead # SCEDs for the unit commitment process create_sced_instance.shutdown_curves[g, minutes_per_step] = \ [ power_t0 - i*ramp_down_rate_sced for i in range(1,int(math.ceil(power_t0/ramp_down_rate_sced))) ] if (g,minutes_per_step) in create_sced_instance.shutdown_curves: g_dict['shutdown_curve'] = create_sced_instance.shutdown_curves[g,minutes_per_step] else: if 'shutdown_capacity' not in g_dict: sced_shutdown_capacity = _calculate_sced_startup_shutdown_capacity_from_none( g_dict['p_min'], ramp_down_rate_sced) else: sced_shutdown_capacity = _calculate_sced_startup_shutdown_capacity_from_existing( g_dict['shutdown_capacity'], g_dict['p_min'], minutes_per_step) g_dict['shutdown_curve'] = [ sced_shutdown_capacity - i*ramp_down_rate_sced \ for i in range(1,int(math.ceil(sced_shutdown_capacity/ramp_down_rate_sced))) ] if not options.enforce_sced_shutdown_ramprate: for g, g_dict in sced_md.elements(element_type='generator', generator_type='thermal'): # make sure the generator can immediately turn off g_dict['shutdown_capacity'] = max(g_dict['shutdown_capacity'], (60./current_state.minutes_per_step)*g_dict['initial_p_output'] + 1.) return sced_md
def create_sced_instance(data_provider:DataProvider, current_state:SimulationState, options, sced_horizon, forecast_error_method = ForecastErrorMethod.PRESCIENT ): ''' Create an hourly deterministic economic dispatch instance, given current forecasts and commitments. ''' assert current_state != None sced_md = data_provider.get_initial_model(options, sced_horizon, current_state.minutes_per_step) # Set initial state _copy_initial_state_into_model(options, current_state, sced_md) ################################################################################ # initialize the demand and renewables data, based on the forecast error model # ################################################################################ if forecast_error_method is ForecastErrorMethod.PRESCIENT: # Warning: This method can see into the future! future_actuals = current_state.get_future_actuals() sced_forecastables, = get_forecastables(sced_md) for future,sced_data in zip(future_actuals, sced_actuals): for t in range(sced_horizon): sced_data[t] = future[t] else: # persistent forecast error: current_actuals = current_state.get_current_actuals() forecasts = current_state.get_forecasts() sced_forecastables = get_forecastables(sced_md) # Go through each time series that can be forecasted for current_actual, forecast, (sced_data,) in zip(current_actuals, forecasts, sced_forecastables): # the first value is, by definition, the actual. sced_data[0] = current_actual # Find how much the first forecast was off from the actual, as a fraction of # the forecast. For all subsequent times, adjust the forecast by the same fraction. current_forecast = forecast[0] if current_forecast == 0.0: forecast_error_ratio = 0.0 else: forecast_error_ratio = current_actual / forecast[0] for t in range(1, sced_horizon): sced_data[t] = forecast[t] * forecast_error_ratio _ensure_reserve_factor_honored(options, sced_md, range(sced_horizon)) ## TODO: propogate relax_t0_ramping_initial_day into this function ## if relaxing initial ramping, we need to relax it in the first SCED as well assert options.relax_t0_ramping_initial_day is False # Set generator commitments for g, g_dict in sced_md.elements(element_type='generator', generator_type='thermal'): # Start by preparing an empty array of the correct size for each generator fixed_commitment = [None]*sced_horizon g_dict['fixed_commitment'] = _time_series_dict(fixed_commitment) # Now fill it in with data for t in range(sced_horizon): fixed_commitment[t] = current_state.get_generator_commitment(g,t) return sced_md