def tab_print(table_name2, status): print table_name2 import glob tables = glob.glob('./tables/*.csv') table_name=table_name2.split(',') print table_name if status==False: for i in tables: if table_name[0] in i.replace('./tables/','').replace('.csv',''): from prettytable import from_csv fp = open("./tables/"+table_name[0]+".csv", "r") customer = from_csv(fp) fp.close() text2.delete('1.0', END) #For delete the text from input box #text2.insert(INSERT, '\n\n') text2.insert(INSERT,customer) elif status==True: cross_prod(table_name2) from prettytable import from_csv fp = open("./tables/tmp.csv", "r") customer = from_csv(fp) fp.close() text2.delete('1.0', END) #For delete the text from input box #text2.insert(INSERT, '\n\n') text2.insert(INSERT,customer)
def makeTABLE(csvFileName): with open(csvFileName, 'r') as csv_file: print prettytable.from_csv(csv_file) mailContent = csv_file.readlines() return mailContent
def tab_print_proj(col, table_name, status): import glob tables = glob.glob('./tables/*.csv') if status is False: for i in tables: if table_name in i.replace('./tables/','').replace('.csv',''): from prettytable import from_csv fp = open("./tables/"+table_name+".csv", "r") customer = from_csv(fp) fp.close() text2.delete('1.0', END) #For delete the text from input box print customer.get_string(fields=col) text2.insert(INSERT, customer.get_string(fields=col)) else: cross_prod(table_name) tables = glob.glob('./tables/*.csv') table_name=table_name.split(',') for i in tables: if table_name[0] in i.replace('./tables/','').replace('.csv','') or table_name[1] in i.replace('./tables/','').replace('.csv',''): from prettytable import from_csv fp = open("./tables/tmp.csv", "r") customer = from_csv(fp) fp.close() text2.delete('1.0', END) #For delete the text from input box print customer.get_string(fields=col) text2.insert(INSERT, customer.get_string(fields=col))
def pprint_df(data_frame): """ INPUT: Pandas Data Frame OUTPUT: A Pretty Pandas Data Frame printed to std out; returns None """ output = StringIO() data_frame.to_csv(output) output.seek(0) print prettytable.from_csv(output) pass
def search_student(search='id'): if search == 'id': print('[1] Searching by ID') with open('student_database_final.csv', 'r') as fr: data_table = from_csv(fr, field_names=[ 'Student ID', 'Student Name', 'Age', 'Gender', 'Department' ]) print(data_table) choice = input('\nPlease enter your choice:\n' '[1] Main Menu\n' '\n' 'admin@sms:~$ ') if choice == '1': main.StartMain.main(self='self') else: print() print('[X] Wrong Input!') time.sleep(.50) if operating_system == 'Linux': os.system('clear') elif operating_system == 'Windows': os.system('cls') student_database() elif search == 'first_name': print('[2] Searching by First Name') with open('student_database_final.csv', 'r') as fr: data_table = from_csv(fr, field_names=[ 'Student ID', 'Student Name', 'Age', 'Gender', 'Department' ]) print(data_table) choice = input('\nPlease enter your choice:\n' '[1] Main Menu\n' '\n' 'admin@sms:~$ ') if choice == '1': main.StartMain.main(self='self') else: print() print('[X] Wrong Input!') time.sleep(.50) if operating_system == 'Linux': os.system('clear') elif operating_system == 'Windows': os.system('cls') student_database()
def readCSV(csvFileName): with open(csvFileName, 'r') as csv_file: mailContent = prettytable.from_csv(csv_file) print mailContent, type(mailContent) # mailContent = "" #csv_file.readlines() return mailContent
def __convertCsvToWarp(self, file): with open(file, 'rb') as f: reader = from_csv(f) table_converted = re.sub('\n', '<br>', str(reader)) table_converted_with_tab = re.sub(' ', ' ', table_converted) return table_converted_with_tab
def old(): memo = raw_input("\nWhich record data to show : ") with open(memo + ".txt", "a+") as fp: mytable = from_csv(fp) os.system(clean) sort(mytable) print mytable
def mail(): with open("running_ins.csv", "r") as fp: x = from_csv(fp) f= open("val_table.txt","w+") f.write(str(x)) f.close() wb = Workbook() ws = wb.active with open('running_ins.csv', 'r') as f: for row in csv.reader(f): ws.append(row) wb.save('all_instance_.xlsx') with open('running_ins.csv', 'r') as book1: r = csv.reader(book1, delimiter=',') for row in r: if (row[4] == 'NULL'): write_null_id(row[0],row[1],row[2],row[3],row[4],row[5],row[6],row[7]) date=datetime.datetime.now() date=date.strftime("%Y-%m-%d %H:%M:%S") cmd = "cat running_ins.csv | column -t > /tmp/running.txt" os.system(cmd) cmd = "mutt -s 'Running Instnace and Tags "+ date +" ' -c MAIL_ID -a /tmp/running_ins.csv < /tmp/running.txt" #os.system(cmd) cmd = "rm -rf running*"
def show_inventory_csv(self): """Show inventory.csv file as a table, using PrettyTable.""" path_current_file = os.path.dirname(os.path.realpath(__file__)) printfile = f'{path_current_file}/inventory.csv' with open(printfile, "r") as fp: x = from_csv(fp) print(x)
def normtable(matrix, gene_order): lib_order = ["Experiments", "Human Liver Carcinoma", "Heatshock", "UV", "Hepatocyte GF", "Interferons", "Brain"] x = 1 + np.shape(matrix)[0] y = 1 + np.shape(matrix)[1] print x, y a = np.arange(x*y).reshape(x,y).astype('object') for k in range(0, y): a[0,k] = lib_order[k] for h in range(1, x): a[h,0] = gene_order[h-1] for h in range(1, x): for t in range(1,7): a[h,t] = matrix[(h-1),(t-1)] with open('TPMnorm_matrix.csv', 'wb') as hello: writer = csv.writer(hello, delimiter=',') data = a writer.writerows(data) fp = open("TPMnorm_matrix.csv", "r") file = from_csv(fp) file.align="l" fp.close()
def show_data(category, base, list): # creating new file to store the sorted data with open(".sorted_file.csv", 'w', newline='') as sortedFile: # writing header writer = csv.DictWriter( sortedFile, fieldnames=['Serial', 'Movie', 'Genres', 'Director', base]) writer.writeheader() # initializing counter to track the serial count = 1 for i in list: # checking if the genre row contains the given category or not if i[1].__contains__(category): writer.writerow({ 'Serial': count, 'Movie': i[0], 'Genres': i[1], 'Director': i[2], base: i[3] }) # limiting the data to 20 for simplifying to user if count == 20: break count = count + 1 # displaying the data in tabular form x = from_csv(open('.sorted_file.csv', newline='')) print(x)
def print_summary_from_csv() -> None: print( "----------------------------------------------------------------------" ) print( 'Summary ("KT" means "Kernel Time", "ET" means "End-to-end Time", in microseconds; "BW" means "Bandwidth" in GB/s):' ) with open(csv_filename, "r") as f: table: PrettyTable = prettytable.from_csv(f) table.field_names = [ "OP", "Args", "Lib", "KT(GPU)", "BW(GPU)", "KT(1 CPU)", "ET(1 CPU)", "KT(32 CPU)", "ET(32 CPU)", "Desc", ] table.del_column("Desc") for row in table.rows: row[2] = {"PyTorch": "PT", "OneFlow": "OF"}[row[2]] print(table)
def history(self): self.MSG = anal.get_all_msg(self.ACCESS_TOKEN, self.GROUP_ID) results = anal.get_activity(self.MSG) self.DF = results[0] self.DATA_MONTH = results[1] self.DATA_HOURS = results[2] self.DATA_DAYS = results[3] anal.graph(self.GROUP_ID, self.DF, self.DATA_MONTH, self.DATA_HOURS, self.DATA_DAYS) output = StringIO() self.DF.to_csv(output) output.seek(0) pt = prettytable.from_csv(output) ret = '<pre>' ret += 'Analytics of GROUP# ' + str(self.GROUP_ID) + '<br>' ret += 'Requested at ' + datetime.datetime.today().isoformat(' ') + '<br> <br>' ret += 'Total Number of Messages: ' + \ str(self.DF['Message Frequency'].sum()) + '<br>' ret += 'Total Number of Words: ' + str(self.DF['Words'].sum()) + '<br>' ret += 'Total Likes: ' + str(self.DF['Likes Received'].sum()) + '<br>' ret += 'Total Days: ' + str((datetime.datetime.fromtimestamp(self.MSG[0][ 'created_at']) - datetime.datetime.fromtimestamp(self.MSG[-1]['created_at'])).days) + '<br>' ret += pt.get_string() + '</pre>' ret += '<br> <br>' ret += '<img src= {{ act_url }}> <br> <br>' ret += '<img src={{ m_url }}>' ret += '<img src={{ l_url }}>' ret += '<img src={{ r_url }}>' return ret
def _print_total_price(price): titles = [ {'ondemand': 'on demand'}, {'noup': '1 y no up'}, {'1yearpartup': '1 y part up'}, {'1yearfullup': '1 y full up'}, {'3yearpartup': '3 y part up'}, {'3yearfullup': '3 y full up'} ] duration = {'hrly': 1, 'mthly': 24 * 30.5, 'yrly': 24 * 30.5 * 12} prices = [] for t in titles: prices.append(float(price[t.keys()[0]])) with open('prices.csv', 'w') as f: f.write('durat,{0}\n'.format( ','.join([x.values()[0] for x in titles])) ) for d in sorted(duration, key=duration.get): f.write('{0},{1}\n'.format( d, ','.join([str(p * duration[d]) for p in prices]) )) with open('prices.csv', 'r') as f: print(from_csv(f))
def testFunc2(data): ''' 从 csv 文件中加载数据 ''' mycsv = open(data) print(mycsv.readline()) table = from_csv(mycsv) mycsv.close() print( '===========================================table3-from csv==============================================' ) print(table) print( '=================================table:SepalLength_Species====================================' ) print(table.get_string(fields=['SepalLength', 'Species'])) print( '=======================================table:60=>80 rows======================================' ) print(table.get_string(start=60, end=80))
def Table(matrix, lib_order, gene_order): a = np.arange(250).reshape(50, 5).astype('object') i = 0 a[0, 0] = 'id' for k in range(1, 50): a[k, 0] = lib_order[(k - 1)] for j in range(0, 4): i = j + 1 a[0, i] = gene_order[j] for u in range(1, 50): a[u, i] = matrix[j, (u - 1)] with open('SummaryStat.csv', 'wb') as hello: writer = csv.writer(hello, delimiter=',') data = a writer.writerows(data) fp = open("SummaryStat.csv", "r") file = from_csv(fp) file.align = "l" fp.close() print(file)
def process_string(csv_string): """Take a raw csv string and convert it into an ascii table""" csv_io = StringIO.StringIO(csv_string) table = from_csv(csv_io) table.align = 'l' return table.get_string()
def pretty_print_table(dfo): from io import StringIO import prettytable output = StringIO() dfo.to_csv(output) output.seek(0) pt = prettytable.from_csv(output) print(pt)
def display(args): if (os.path.isfile(args.FILE)): fp = open(args.FILE, 'r') mytable = from_csv(fp) print(mytable) fp.close() else: print("ERROR IN FILE DISPLAY\n")
def display(args): if(os.path.isfile(args.FILE)): fp = open(args.FILE,'r') mytable=from_csv(fp) print(mytable) fp.close() else: print("ERROR IN FILE DISPLAY\n")
def listStops(): if not fileexists: print("You don't have any past searches") return f = open(fname, "r") tb = prettytable.from_csv(f) f.close() print(tb)
def pretty_print(df): from StringIO import StringIO import prettytable output = StringIO() df.to_csv(output, index = False, sep ='\t') output.seek(0) pt = prettytable.from_csv(output) print(pt)
def to_rst(cls, columns=None, sort_key=None): input = StringIO(cls.to_csv(columns, sort_key)) from prettytable import from_csv table = from_csv(input) lines = table.get_string(hrules=True).splitlines() # Special separator between header and rows in RST lines[2] = lines[2].replace('-', '=') return '\n'.join(lines)
def sale_table(): #sale list print() print('商品表') goods_file = open('goods.csv', 'r') saletb = from_csv(goods_file) saletb.align = 'c' saletb.sort = 'goods' print(saletb) goods_file.close()
def main(): """ It's script which trasnlate csv to HTML table. """ with open("dataset.csv", "r") as fp: x = from_csv(fp) # read from csv by PT y = PrettyTable.get_html_string(x) # translate to html, PT table_html = y # store in var html_file=open('table.html','w') # create and write html_file=html_file.write(table_html) # add var html
def show_product_range_csv(self): """Show product_range.csv file as a table, using PrettyTable.""" path_current_file = os.path.dirname(os.path.realpath(__file__)) printfile = f'{path_current_file}/product_range.csv' with open(printfile, "r") as fp: x = from_csv(fp, field_names=["Product Name", "Product group", "Footprint Weight"]) x_to_show = x[1:] print(x_to_show)
def dept_tables(): #pickle.dump(dept_cnt, open('pending_departments.pkl','wb')) #pending_departments = pickle.load(open('pending_departments.pkl','rb')) print "Pending", sum(pending_departments.values()) print "Published", sum(dept_cnt.values()) #print set(pending_departments.items()) #print list(set(pending_departments.items()) & set(dept_cnt.items())) #print [d for d in pending_departments.items()] # create a list of tuples #[(key, value)] published_column = [] for department in pending_departments: print ">>",department if dept_cnt.has_key(department): published_column.append(dept_cnt[department]) else: published_column.append(0) print published_column print pending_departments f = open('departments.csv', 'wt') writer = csv.writer(f) x=PrettyTable() dept_column = [item[0] for item in pending_departments.items()] x.add_column("Department Name", pending_departments.keys(), 'l', 't') x.add_column("Published",published_column,'r') x.add_column("Pending",pending_departments.values(),'r') print x writer.writerow(['Department Name','Pending XML','Online']) ''' Create table to add data to ''' #print u'\u2019'.encode('utf-8') .replace(u'\u2019','') #Fix bad windows chars for department, count in sorted(pending_departments.items()): writer.writerow([department, count, '', ]) f.close() print writer fp = open('departments.csv', 'r') pt = from_csv(fp) pt.align['Department Name'] = "l" # Left align city names pt.padding_width = 1 # One space between column edges and contents (default) print pt '''
def Report(self): from prettytable import PrettyTable from prettytable import from_csv #table from csv path = "file location" csv_file = open(path) x = from_csv(csv_file) print(x)
def Report(self): from prettytable import PrettyTable from prettytable import from_csv #table from csv path = "/Users/Danielle/Desktop/EggIE_ver2_SOFTENG/resultegg.csv" csv_file = open(path) x = from_csv(csv_file) print(x)
def setUp(self): csv_string = """City name, Area , Population , Annual Rainfall Sydney, 2058 , 4336374 , 1214.8 Melbourne, 1566 , 3806092 , 646.9 Brisbane, 5905 , 1857594 , 1146.4 Perth, 5386 , 1554769 , 869.4 Adelaide, 1295 , 1158259 , 600.5 Hobart, 1357 , 205556 , 619.5 Darwin, 0112 , 120900 , 1714.7""" csv_fp = StringIO.StringIO(csv_string) self.x = from_csv(csv_fp)
def stringify_pandas(pd): """ :param pd: A Dataframe :return: """ output = StringIO() pd.to_csv(output) pt = prettytable.from_csv(output) print(pt)
def print_pandas_table(data_frame): '''Prints pandas dataframe to table in console''' from StringIO import StringIO import prettytable output = StringIO() data_frame.to_csv(output) output.seek(0) pt = prettytable.from_csv(output) print pt
def top_ten(r_type, result_file): ''' Print top ten test result as a table in console with specified stat data ''' result = pd.read_csv(result_file, sep=",") print "\nTop ten in descending order " + r_type output = StringIO() result.groupby(["Template Name"]).mean().sort([r_type], ascending=False)[:10].to_csv(output, encoding='utf-8', sep=",") output.seek(0) pt = prettytable.from_csv(output) print pt
def show(self): if self.new: print('Belum ada Highscore') else: ranked = self.highscore_df.sort_values(by='high_score', ascending=False) ranked['rank'] = ranked['high_score'].rank( ascending=False).astype('int') ranked.head(10).to_csv('ranked.csv') with open('ranked.csv') as csv: table = from_csv(csv) print(table)
def view_students(): print("\n") border_msg(" Student's Record In Our Information System ") try: fp = open(student_database, "r") file = from_csv(fp) fp.close() print(file) except (csv.Error, FileNotFoundError): print("\n" + smb.WARN + fontcolor.red( "Something Went Wrong ! Check 'students.csv' File !")) finally: continue_msg()
def testFunc2(data='mycsv.csv'): ''' 从 csv 文件中加载数据 ''' mycsv = open(data) table = from_csv(mycsv) mycsv.close() print '===========================================table==============================================' print table print '=================================table:SepalLength_Species====================================' print table.get_string(fields=['SepalLength', 'Species']) print '=======================================table:60=>80 rows======================================' print table.get_string(start=60, end=80)
def executesearch(self, searchquery): req = urllib2.Request(url + authservice) creds = self.encodeUserData(u,p) res = urllib2.urlopen(req,creds) sessionxml = res.read() sessionkey = minidom.parseString(sessionxml).getElementsByTagName('sessionKey')[0].childNodes[0].nodeValue print "got session key: %s" % sessionkey if not searchquery.startswith('search'): searchquery = 'search ' + searchquery req = urllib2.Request(url + searchservice) req.add_header('Authorization', 'Splunk %s' % sessionkey) search=urllib.urlencode({'search': searchquery}) res = urllib2.urlopen(req,search) searchxml = res.read() sid = minidom.parseString(searchxml).getElementsByTagName('sid')[0].childNodes[0].nodeValue print "got sid: %s" % sid searchservicesstatus = '/services/search/jobs/%s/' % sid req = urllib2.Request(url + searchservicesstatus) req.add_header('Authorization', 'Splunk %s' % sessionkey) isnotdone = True while isnotdone: res = urllib2.urlopen(req) searchstatus = res.read() isdonestatus = re.compile('isDone">(0|1)') isdonestatus = isdonestatus.search(searchstatus).groups()[0] if (isdonestatus == '1'): isnotdone = False print "got search status: %s" % isdonestatus searchserviceresults = '/services/search/jobs/%s/results?output_mode=csv&count=0' % sid req = urllib2.Request(url + searchserviceresults) req.add_header('Authorization', 'Splunk %s' % sessionkey) res = urllib2.urlopen(req) searchresults = res.read() results = StringIO.StringIO(searchresults) table = prettytable.from_csv(results) print table
def read_print_csv(read_csv_list_criteria): csv_file_path_list, csv_file_name_list = find_file_path_name(test_queries_temp_dir, read_csv_list_criteria) if csv_file_name_list: from prettytable import from_csv for each_csv_file in csv_file_name_list: file_csv = open(test_queries_temp_dir + "/" + each_csv_file , "r") csv_table = from_csv(file_csv) if "all_rounds" in each_csv_file: print("\n\nSummary of all rounds for " + each_csv_file[:-4]) print(csv_table.get_string(sortby=master_header)) if "failures" in each_csv_file: print("\n\n Failed Queries for " + each_csv_file[:-4]) print(csv_table.get_string(sortby=master_header)) if "min_comparison" in each_csv_file: print("\n\n Fastest Execution Analysis \n") print(csv_table.get_string(sortby=master_header)) file_csv.close()
def pickCut(Sequence): from prettytable import from_csv print("Which of these characterized loci is going to get lucky: ") fp = open("cutsites.csv", "r") pt = from_csv(fp) fp.close() print(pt) cutsiteNum = int(input("Choose your cutsite (Leftmost number):")) print("") print("You've chosen: ") print(pt.get_string(start = cutsiteNum-1, end = cutsiteNum)) counter = 0 for row in pt: counter += 1 if counter == cutsiteNum: row.border = False row.header = False cutsite = row.get_string(fields=["sequence"]).strip() cutName = row.get_string(fields=["name"]).strip() chromosome = int(row.get_string(fields=["chromosome"]).strip()) if chromosome >= 10: filename = "Scer" + str(chromosome) + ".fasta" else: filename = "Scer0" + str(chromosome) + ".fasta" ChromosomeRec=SeqIO.read(filename, "fasta") ChromosomeSeq = ChromosomeRec.seq if ChromosomeSeq.find(cutsite) == -1: ChromosomeSeq = ChromosomeSeq.reverse_complement() startInd = ChromosomeSeq.find(cutsite) UpHomology = SeqRecord(ChromosomeSeq[startInd - 1000:startInd]) DownHomology = SeqRecord(ChromosomeSeq[startInd + 30:startInd + 1030]) return UpHomology, DownHomology
import sys from prettytable import from_csv # This file uses a third party library. PrettyTable: Display data in tables using a beautiful ASCII format. # Thank you [email protected] (code.google.com) for providing the prettytable library. # TODO: Add filter functionality (ex. filter search engines with genre: google facebook duckduckgo -> google duckduckgo) print "Run 'manageCollection.py' to append/remove Collection(s).\n" collectionsData = open("Collections.csv", "r") collectionsTable = from_csv(collectionsData) def displayUnsorted(): print collectionsTable collectionsData.close() x = raw_input("Press enter to exit.") sys.exit("Completed.") def displaySorted(): print "1. Sort by URL (default)" print "2. Sort by Genre" print "3. Sort by Description" print "4. Sort by Ranking" sortBy = raw_input("Select what you would like to sort by.") if sortBy == "1": print "Sorting by URL... This may take awhile." print collectionsTable.get_string(sortby='URL') elif sortBy == "2":
count["while"].append(sum_while) with open('dict.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter= ' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(["token","occurences","cycles"]) for key,value in count.items(): writer.writerow([key,value[0],value[1]]) read_fault = open("dict.csv","r") line = read_fault.readline() for line in read_fault: new_line = re.sub(r"\^M","",line) #print(new_line) line = read_fault.readline() read_fault.close() reader = open("dict.csv", "r") #reader = re.sub(r"\^M","",reader) mytable = from_csv(reader) print("Lookup Table Population") print(mytable) print("Total number of Memory Accesses is ",count["id"][0]) print("Memory Accesses") with open('register.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter= ' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(["ID","Accesses"]) for key,value in registers_used.items(): writer.writerow([key,value]) reader_reg = open("register.csv","r") myreg = from_csv(reader_reg) print(myreg) print("For count") with open('for.csv', 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter= ' ',quotechar='|', quoting=csv.QUOTE_MINIMAL)
df.drop(['min1','min2','max1','max2'],axis=1,inplace=True) #df = df.set_index('sample') sampleList = df['sample'].unique() #sampleToUse = sampleList[0] print '#'*100 print 'Cutflow for',sampleToUse print '#'*100 dfPrint = df.loc[df['sample']==sampleToUse] dfPrint = dfPrint.drop(['sample','errEffRel','errEffAbs'],axis=1) #dfPrint = dfPrint.head(10) # print output = StringIO() dfPrint.to_csv(output,index=False) output.seek(0) pt = prettytable.from_csv(output) print pt print print '#'*100 print 'latex table' print '#'*100 print print dfPrint.to_latex(index=False) print
def show_csv_file(name): fp = open(name, "r") mytab = from_csv(fp) fp.close() print mytab
"__VIEWSTATEGENERATOR":"413B2934", "__EVENTVALIDATION":"/wEdAAgWGG2RY7jiUVmjHVLA3Vuhehn3bx2onw+gsGVGxW2uqPNH0QUya0tFKkgIABYfTinPqMgpP5oNyRNOFC9UkRd5TOB3/nlg9WQl65G7nSsW3XNGFTzwHLRD2v/eJGCd0ynBitcvyf0ePx5gnv8TklictmXUWyWAGbecBNn3zDP8oVEqyvt2y+R5rbK1ebIZhW17xDILuWgEcbUxmBSNbL8K", "DropDownList_CaseType":"Confirm", #DHF Confirm "DropDownList_AreaType":"DIST", #DIST VILLAGE } date = datetime.date(2014,12,10) F = {} for i in range(15): data["TextBox_Start"] = date date += datetime.timedelta(days=1) data['TextBox_End'] = date print data['TextBox_Start'] , data['TextBox_End'] html = requests.post('http://dengue.kcg.gov.tw/KCGDengue/Mobile.aspx', verify=False, headers=headers, data=data) match = re.findall(u'var AREA = new Array\((.*?)\);', html.text) match2 = re.findall(u'var NUMB = new Array\((.*?)\);', html.text) if match == [] : continue Area = [x.strip("'") for x in match[0].split(', ')] Count = [ int(x) for x in match2[0].split(', ')] final = dict(zip(Area, Count)) F[date.strftime('%Y-%m-%d')] = final F.update(F) df = pd.DataFrame.from_dict(F, orient='columns') newset = df.T.fillna(0) output = StringIO() newset.to_csv(output,encoding='utf-8',sep=',') output.seek(0) print prettytable.from_csv(output)
def display_as_table(file_name_full): with open(file_name_full, 'rb') as fd: sum_table = from_csv(fd) print sum_table
mpl.rcParams['lines.linewidth'] = 2 mpl.rcParams['lines.markersize'] = 3 from matplotlib.widgets import Slider import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter import matplotlib.dates as mdates slider_on = 1 ## Open with prettytable ## fp = open("klarup_log.csv", "rb") table = pt.from_csv(fp) fp.close() d,i={},0 cols = map(list, zip(*table._rows)) for key in table.field_names: if cols[i].replace('.','').isdigit(): d[key] = float(cols[i]) else: d[key] = cols[i] i+=1 d['time_datetime'] = [] for s in d['Time']: d['time_datetime'].append( datetime.datetime.strptime( s , '%d. %B %Y %H:%M' ) )