def i4_to_van_der_corput_test ( ):

#*****************************************************************************80
#
## I4_TO_VAN_DER_CORPUT_TEST tests I4_TO_VAN_DER_CORPUT.
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    12 May 2015
#
#  Author:
#
#    John Burkardt
#
  import numpy as np
  from prime import prime

  n_prime = 5
  n_test = 10

  print ''
  print 'I4_TO_VAN_DER_CORPUT_TEST'
  print '  I4_TO_VAN_DER_CORPUT computes the elements'
  print '  of a van der Corput sequence.'
  print '  The sequence depends on the prime numbers used'
  print '  as a base.'
  print ''
  print '  Bases:'
  print ''
  print ''
  for j in range ( 1, n_prime + 1 ):
    print '        %6d' % prime ( j ),
  print ''
  print ''

  h = np.zeros ( n_prime )

  for i in range ( 0, n_test ):
    for j in range ( 1, n_prime + 1 ):
      jm1 = j - 1
      p = prime ( j )
      h[jm1] = i4_to_van_der_corput ( i, p )

    print '  %2d' % ( i ),
    for j in range ( 1, n_prime + 1 ):
      jm1 = j - 1
      print '  %12f' % ( h[jm1] ),
    print ''
#
#  Terminate.
#
  print ''
  print 'I4_TO_VAN_DER_CORPUT_TEST'
  print '  Normal end of execution.'

  return
Example #2
0
def answer(limit=11):
    hits, total = 0, 0
    for pos in count():
        if is_truncatable_prime(prime(pos)):
            hits += 1
            total += prime(pos)
        if hits == limit:
            return total
Example #3
0
def rec(currents, ps):
    if len(currents) == 5:
        print(currents, sum(i for i in currents))
        sys.exit(0)
    for p in ps:
        if p <= currents[-1]:
            continue
        for c in currents:
            if not prime(int(str(c) + str(p))) or \
               not prime(int(str(p) + str(c))):
                break
        else:
            rec(currents + [p], ps)
Example #4
0
File: e26.py Project: bngo92/euler
def e26():
    m = 0
    for x in prime(1000):
        s = len(divide(1, x))
        if s > m:
            m = s
            print x, m
Example #5
0
def sum_prime_square(i, j):
    """
    I = ith prime number
    returns I + 2*(j**2)
    """

    i = pr.prime(i)
    return i + 2*(j**2)
Example #6
0
def write_primes():
    primes = []
    for i in range(2001, int(sqrt(10000000)) + 1000, 2):
        if prime(i):
            primes.append(i)
            
    primes_file = open('70.txt', 'wb')
    pickle.dump(primes, primes_file)
Example #7
0
    def calc(self):
        while True:
            p = prime(self.range).get_prime()
            q = prime(self.range).get_prime()
            if p != q:
                break

        n = p * q
        t = (p - 1) * (q - 1)

        for e in range(2, t):
            if gcd(e, t) == 1:
                break

        for i in range(1, 10):
            x = 1 + i * t
            if x % e == 0:
                d = x // e
                if d != e:
                    break

        return n, e, d, p, q, t
Example #8
0
        if not factor in primes_set:
            factors += prime_factors(factor, primes_set)
        else:
            factors.append(factor)

        n /= factor
    
    if n != 1:
        factors.append(n)
        
    return set(factors)
    
primes = []
for i in range(2, 1000000):
    if prime(i):
        primes.append(i)
primes_set = set(primes)

totient_values_tally = 0
for number in range(2, 1000001):
    if number in primes_set:
        totient_values_tally += number - 1
    else:
        j = number
        prime_factors_list_denominator = prime_factors(number, primes_set)
        for i in prime_factors_list_denominator:
            j = j * (i - 1) / i
        totient_values_tally += j
    
print totient_values_tally
Example #9
0
# (1 + 2 + ... + 10)2 = 552 = 3025
# Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.

# Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

r = xrange(1, 101)
a = sum(r)
print a * a - sum(i * i for i in r)

# 4.)
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

# What is the 10 001st prime number?

import prime

print prime.prime(10000)

# 5.)
# Fizz Buzz

for num in range(1, 100):
    if num % 5 == 0 and num % 3 == 0:
        print "FizzBuzz"
    elif num % 3 == 0:
        print "Fizz"
    elif num % 5 == 0:
        print "Buzz"
    else:
        print num
Example #10
0
import prime

MAX = 5000
prime.prime(MAX)


def check_length(n, below):
    maxprime = 0
    for x in xrange(0, below):
        total = sum(prime.prime_list[x : x + n])
        if total > below:
            break
        if prime.isprime(total):
            maxprime = total
    return maxprime


for n in xrange(1000, 0, -1):
    maxprime = check_length(n, 1000000)
    if maxprime:
        print maxprime
        break
Example #11
0
import prime


def get_index_of_closest_lower(digits, target):
    closest_value = -10
    closest_index = 0
    for i in xrange(0, len(digits)):
        difference = int(target) - int(digits[i])
        if difference > 0 and difference < int(target) - int(closest_value):
            closest_value = digits[i]
            closest_index = i
    return closest_index


prime_finder = prime.prime('bil')


def next_highest_permutation(digits):
    for i in xrange(len(digits) - 1, 0, -1):
        if digits[i] < digits[i - 1]:
            lower = digits[i]
            higher = digits[i - 1]
            remainder = digits[i:]
            index_of_closest_lower = get_index_of_closest_lower(
                remainder, higher)
            remainder = remainder[:index_of_closest_lower] + remainder[
                index_of_closest_lower + 1:]
            remainder = higher + remainder
            digits = digits[0:i -
                            1] + digits[i + index_of_closest_lower] + ''.join(
                                sorted(remainder, reverse=True))
Example #12
0
from time import time
from prime import prime
start = time()
i = 10
p = []
while len(p) < 11:
    if prime(i) and all(prime(int(str(i)[:j])) and prime(int(str(i)[j:])) for j, _ in enumerate(str(i)) if j > 0):
        p.append(i)
    i += 1
print('Evaluated {} numbers in {} seconds'.format(i, time() - start))
print('Found these: {}'.format(p))
print('Sum: {}'.format(sum(i for i in p)))
Example #13
0
y = input("Enter the filename of the second database :")

with open("../../../../data/" + x) as dict:
    dict1 = dict.read().split('\n')
with open("../../../../data/" + y) as dict:
    dict2 = dict.read().split('\n')
if len(dict1) < len(dict2):
    n = len(dict2)
else:
    n = len(dict1)
p = 0.18
m1 = ((float(n) * float(math.log(p))) /
      float(math.log(1.0 / (math.pow(2, float(math.log(2)))))))
k = (float(math.log(2)) * float(m1) / float(n))
#print (math.floor(m),math.floor(k))
LENNY = prime.prime(math.ceil(m1))
m = [None for i in range(LENNY)]
if len(dict1) > len(dict2):
    for i in range(len(dict1)):
        a = []
        a = dict1[i]
        n = mmh3.murmur(a.lower())
        n = n % LENNY
        f = fnv.fnv(a.lower())
        f = f % LENNY
        q = horner.hash3(a.lower())
        q = q % LENNY
        m[n] = 1
        m[f] = 1
        m[q] = 1
Example #14
0
#!/usr/bin/env python2

from math import sqrt
from prime import prime_int as prime

number = 600851475143
start = int(sqrt(number))

if not start % 2:
    start += 1
for n in xrange(start, 0, -2):
    if not prime(n):
        continue
    if not number % n:
        break

print "result: %s" % n
Example #15
0
#!/usr/bin/python3
from prime import prime

number = 1
counter = 1

while counter != 10001:
    if prime(number):
        counter += 1
    number += 2

print(number - 2)

Example #16
0
from prime import prime
from itertools import takewhile
from time import time
from math import sqrt

# doing it the other way around might save loads of time
# this is way too slow
# this is as slow as a frozen zenyatta
# this shit is so slow your fat mom could run faster

primes = [i for i in xrange(2, 1000000) if prime(i)]
start = time()
ma, mp = 509, 0
for q in primes[-300:]:
    alternatestart = time()
    print(q)
    i = 0
    while i < int(sqrt(len(primes))):
        s = 0
        c = 0
        for j in takewhile(lambda x: s < q, primes[i:]):
            s += j
            c += 1
        if s == q:
            if c > ma:
                ma = c
                mp = q
            break
        i += 1
    print(mp, ma, time() - alternatestart)
print(mp, ma, time() - start)
Example #17
0
def i4_factor(n):

    #*****************************************************************************80
    #
    ## I4_FACTOR factors an integer into prime factors.
    #
    #  Formula:
    #
    #    N = NLEFT * Product ( 1 <= I <= NFACTOR ) FACTOR(I)^POWER(I).
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    14 February 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    #  Parameters:
    #
    #    Input, integer N, the integer to be factored.  N may be positive,
    #    negative, or 0.
    #
    #    Output, integer NFACTOR, the number of prime factors of N discovered
    #    by the routine.
    #
    #    Output, integer FACTOR(NFACTOR), the prime factors of N.
    #
    #    Output, integer POWER(NFACTOR).  POWER(I) is the power of
    #    the FACTOR(I) in the representation of N.
    #
    #    Output, integer NLEFT, the factor of N that the routine could not
    #    divide out.  If NLEFT is 1, then N has been completely factored.
    #    Otherwise, NLEFT represents factors of N involving large primes.
    #
    from prime import prime

    nfactor = 0
    factor = []
    power = []
    nleft = n

    if (n == 0):
        return nfactor, factor, power, nleft

    if (abs(n) == 1):
        nfactor = 1
        factor.append(1)
        power.append(1)
        return nfactor, factor, power, nleft
#
#  Find out how many primes we stored.
#
    maxprime = prime(-1)
    #
    #  Try dividing the remainder by each prime.
    #
    for i in range(1, maxprime + 1):

        p = prime(i)

        if (((abs(nleft)) % p) == 0):

            nfactor = nfactor + 1
            factor.append(p)
            power.append(0)

            while (True):

                power[nfactor - 1] = power[nfactor - 1] + 1
                nleft = (nleft // p)

                if (((abs(nleft)) % p) != 0):
                    break

            if (abs(nleft) == 1):
                break

    return nfactor, factor, power, nleft
Example #18
0
from prime import prime
from math import sqrt
from time import time

t = time()

square_max = 7072
cube_max = 369
quart_max = 85

primes = [i for i in range(2, square_max + 1) if prime(i)]
squares = [i for i in primes if i <= square_max]
cubes = [i for i in primes if i <= cube_max]
quarts = [i for i in primes if i <= quart_max]

numbers = []
for square in squares:
    sum = square ** 2
    
    for cube in cubes:
        sum += cube ** 3
        
        if sum >= 50000000:
            sum -= cube ** 3
            break
        
        for quart in quarts:
            sum += quart ** 4
            
            if sum < 50000000:
Example #19
0
 def test_1の時(self):
     p=prime.prime(1)
     self.assertEqual(p,False)
Example #20
0
 def test_素数じゃない時(self):
     p=prime.prime(4)
     self.assertEqual(p,False)
Example #21
0
 def test_素数の時(self):
     p=prime.prime(3)
     self.assertEqual(p,True)
Example #22
0
 def test_0以下の時(self):
     p=prime.prime(-1)
     self.assertEqual(p,False)
Example #23
0
from prime import prime
from time import time
start = time()
ma, mb, mn = 0, 0, 0
for a in xrange(-999, 1000):
    for b in xrange(-999, 1000):
        n = 0
        try:
            while prime(n * n + a * n + b):
                n += 1
            if n > mn:
                ma, mb, mn = a, b, n
        except ValueError:
            continue

print(ma * mb)
        
print(time() - start)
Example #24
0
 def test_for_zero(self):
     """Test that zero returns an empty list"""
     self.assertEqual(prime(0), [], msg="Zero should return an empty list")
Example #25
0
import prime

print(prime.prime(10001))
Example #26
0
import prime
print(prime.prime(10000))
Example #27
0
def send():
    # If something is sent via the submit button
    if request.method == 'POST':
        # Turn the inputted option in the drop down to a string and save it as a variable
        name = request.form.get('name')
        name = str(name)
        # Store the current timestamp as a variable for later plot naming
        now = time.strftime("%Y%m%d-%H%M%S")
        # Check to make sure the name is in the dataframes in the backend
        isin = Animation.isin(name)

        # Get last name by splitting the full name and pull out the second element
        # Turn it lower case to match the file name
        lastname = name.split()[1].lower()
        # Get the usage file name for everybody
        usagefile = name + '_usage_light.png'

        # Conditionals to fill in based on the user input
        strikes = int(request.form.get('strikes'))
        balls = int(request.form.get('balls'))
        outs = int(request.form.get('outs'))
        bat = str(request.form.get('bat'))
        inning = int(request.form.get('inning'))
        prev = str(request.form.get('pitch'))
        game = str(request.form.get('game'))
        r1 = str(request.form.get('r1'))
        r2 = str(request.form.get('r2'))
        r3 = str(request.form.get('r3'))
        # Input fields must be retrieved a bit differently than drop down/checkboxes
        pit_score = int(request.form['pscore'])
        bat_score = int(request.form['bscore'])

        # Read in the template
        df = pd.read_csv('for_inputs.csv', index_col=0)
        # Fill it out based on form values
        # Scores are filled out as is, no need for if statements
        df['bat_score'] = bat_score
        df['fld_score'] = pit_score
        # If statements for strikes
        if strikes == 0:
            df['s__0'] = 1
        elif strikes == 1:
            df['s__1'] = 1
        else:
            df['s__2'] = 1

        # If statements for balls
        if balls == 0:
            df['b__0'] = 1
        elif balls == 1:
            df['b__1'] = 1
        elif balls == 2:
            df['b__2'] = 1
        else:
            df['b__3'] = 1

        # If statements for outs
        if outs == 0:
            df['o__0'] = 1
        elif outs == 1:
            df['o__1'] = 1
        else:
            df['o__2'] = 1

        # If statements for innings
        if inning < 4:
            df['early'] = 1
        elif inning > 3 and inning < 7:
            df['mid'] = 1
        elif inning > 6:
            df['late'] = 1

        # If statements for batter handedness
        if bat == 'right':
            df['bat_right'] = 1
        elif bat == 'left':
            df['bat_left'] = 1

        # If statements for game type
        if game == 'reg':
            df['reg_season'] = 1
        elif game == "post":
            df['post_season'] = 1

        # If statements for previous pitch
        # Conditional only for Zack Greinke since he's the only one with 'junk' pitches
        # Its 'proper' place is before the 'prev__None' columns
        if name == 'Zack Greinke':
            # argwhere creates an array of arrays, fish out the number through indexing to get rid of layers
            # Need to make sure to turn to int instead of np.int for the pd.insert function
            loc = int(np.argwhere(df.columns == 'prev__None')[0][0])
            df.insert(loc, 'prev__Junk', 0)

        if prev == 'fb':
            df['prev__Fastball'] = 1
        elif prev == 'bb':
            df['prev__Breaking Ball'] = 1
        elif prev == 'os':
            df['prev__Off-speed'] = 1
        elif prev == "jk":
            df['prev__Junk'] = 1

        # If statements for runners
        # Want to consider all options so make 3 different if clauses rather than elif clauses (terminate if clause once one equals True)
        # Default is all zeroes (ie. no runners on), so no need to include that into the clause
        if r1 == 'first':
            df['on_1b'] = 1
        if r2 == 'second':
            df['on_2b'] = 1
        if r3 == 'third':
            df['on_3b'] = 1

        # If the player name does exist
        if isin == True:

            pitchfile = name + '_pitches.png'
            # Run the model with the name of player, user-input dataframe and current timestamp
            pred = rm.run_model(name, df, now)
            # Run the scenario sentence generator with the user-input dataframe
            scenario = rm.scenario(df)
            proba_plot = 'prob_' + now + '.png'

            # Call the custome prime.py script to calculate a player's prime years
            prime_years = prime.prime(name)
            # Run the create dynamic radar plot function
            Animation.dynamic(name, now)
            # Create the name of the animated plot to be made
            filename = 'script' + now + '.gif'
            # Run the static radar plot of average career attributes
            Animation.static(name, now)
            # Plot file name
            staticradar = 'static' + now + '.png'
            # Run the create plot of career attributes over age function
            Animation.progression(name, now)
            prog_name = 'prog' + now + '.png'
            return render_template('send.html',
                                   playername=name,
                                   file=filename,
                                   pitchfile=pitchfile,
                                   usagefile=usagefile,
                                   proba_plot=proba_plot,
                                   pred=pred,
                                   situation=scenario,
                                   years=prime_years,
                                   progfile=prog_name,
                                   staticradar=staticradar)

        # If the player name does not exist in the database then send them to an error page
        else:
            return render_template('error.html')
Example #28
0
import prime
print prime.prime(11)
print prime._isprime(32)
print prime.isprime(11)
Example #29
0
def answer(num):
    """ returns the num-th prime """
    return prime(num - 1)
	Make sure it is large. Otherwise,
	it will not be as consecutively 
	random.
	"""

# User input information
print "." * 100
print "How many random numbers do you want?"
n = int(raw_input('> '))
print "." * 100
print "Do you want the random numbers fixed in the range of the amount of random numbers that you wanted? (y/n)"
random_number_ranged = raw_input('> ')
print "." * 100

# Instance of prime object
thatnumber = prime()

# Initialization of variables and constants
a = randint(0, n ** 2)
b = randint(0, n ** 2)
initial1 = randint(0, n)
SEED = randint(0, 1000)
random.seed(SEED) 
N = n
i = 0
x = []
y = []

# Assign important functions nessisary for the operation. 
def sign_convention():
    return choice([True, False])
Example #31
0
#!/usr/bin/python

import prime, string
prime._refresh(80000)

def is_8_prime_family(p, d):
    c = 0
    for r in '0123456789':
        np = int(string.replace(p, d, r))
        if(np > 100000 and np < 999999 and prime.isprime(np)): c += 1
    return c==8

n=9000
while(True):
    n += 1
    p = prime.prime(n)
    if p < 100000: continue
    if p > 999999: break
    ps = str(p)
    ld = ps[5:6]
    if (ps.count('0')==3 and is_8_prime_family(ps, '0')) or (ps.count('1')==3 and ld!='1' and is_8_prime_family(ps, '1')) or \
        (ps.count('2')==3 and is_8_prime_family(ps, '2')):
        print "Answer: %s %s" % (n, ps)
        break
Example #32
0
import prime as p

f1 = open('output.txt', 'w')

f2 = open('input.txt', 'r')
n1 = f2.readline()
n2 = f2.readline()

f1.write("The prime numbers within the range are: \n")

for i in range(int(n1), int(n2)):
    if p.prime(i):
        f1.write(str(i))
        f1.write("\n")

f1.close()
Example #33
0
def i4_factor ( n ):

#*****************************************************************************80
#
## I4_FACTOR factors an integer into prime factors.
#
#  Formula:
#
#    N = NLEFT * Product ( 1 <= I <= NFACTOR ) FACTOR(I)^POWER(I).
#
#  Licensing:
#
#    This code is distributed under the GNU LGPL license.
#
#  Modified:
#
#    14 February 2015
#
#  Author:
#
#    John Burkardt
#
#  Parameters:
#
#    Input, integer N, the integer to be factored.  N may be positive,
#    negative, or 0.
#
#    Output, integer NFACTOR, the number of prime factors of N discovered
#    by the routine.
#
#    Output, integer FACTOR(NFACTOR), the prime factors of N.
#
#    Output, integer POWER(NFACTOR).  POWER(I) is the power of
#    the FACTOR(I) in the representation of N.
#
#    Output, integer NLEFT, the factor of N that the routine could not
#    divide out.  If NLEFT is 1, then N has been completely factored.
#    Otherwise, NLEFT represents factors of N involving large primes.
#
  from prime import prime

  nfactor = 0
  factor = []
  power = []
  nleft = n

  if ( n == 0 ):
    return nfactor, factor, power, nleft

  if ( abs ( n ) == 1 ):
    nfactor = 1
    factor.append ( 1 )
    power.append ( 1 )
    return nfactor, factor, power, nleft
#
#  Find out how many primes we stored.
#
  maxprime = prime ( -1 )
#
#  Try dividing the remainder by each prime.
#
  for i in range ( 1, maxprime + 1 ):

    p = prime ( i )

    if ( ( ( abs ( nleft ) ) % p ) == 0 ):

      nfactor = nfactor + 1
      factor.append ( p )
      power.append ( 0 )

      while ( True ):

        power[nfactor-1] = power[nfactor-1] + 1
        nleft =  ( nleft // p )

        if ( ( ( abs ( nleft ) ) % p ) != 0 ):
          break

      if ( abs ( nleft ) == 1 ):
        break

  return nfactor, factor, power, nleft
Example #34
0
import prime
n = int(input("enter a number"))
if (prime.prime(n)):
    print("Prime")
else:
    print("Not prime")
Example #35
0
 def test_first_three_primes(self):
     """Test first three prime numbers"""
     self.assertEqual(prime(3), [2, 3, 5],
                      msg="First three primes should be [2, 3, 5]")
Example #36
0
#!/usr/bin/env python2

from prime import prime_int as prime

n = 1
result = 2

while n < 2000000:
	n += 2
	if prime(n):
		result += n

print 'result: %s' % result
Example #37
0
 def test_for_negative_numbers(self):
     """Raise value error if the input is negative"""
     with self.assertRaises(ValueError):
         prime(-3)
Example #38
0
from __future__ import division
from prime import prime

total, current, primes = 5, 9, 3
i = 4
while primes / total >= 0.1:
    for __ in range(4):
        current += i
        total += 1
        if prime(current):
            primes += 1
    i += 2
print(i - 1)
Example #39
0
 def test_0の時(self):
     p=prime.prime(0)
     self.assertEqual(p,False)
Example #40
0
#!/usr/bin/python

import prime

print prime.prime(10000)
Example #41
0
 def test_negative(self, number=-20):
   resluts = prime(number)
   self.assertEqual(resluts, "error")
Example #42
0
 def test_first_five_primes(self):
     """Test first five prime numbers"""
     self.assertEqual(prime(5), [2, 3, 5, 7, 11],
                      msg="First three primes should be [2, 3, 5, 7, 11]")
Example #43
0
 def test_small_postive_numbers(self, number=2):
   resluts = prime(number)
   self.assertTrue(resluts == [2])
Example #44
0
 def test_for_non_integers(self):
     """Raise error if the input is not an integer"""
     with self.assertRaises(TypeError):
         prime('str')
Example #45
0
# -*- coding: utf-8 -*-
"""Problem 3
02 November 2001

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?"""

from prime import prime

target=600851475143

factors=[]

p=prime()

s=target/2
while p.primes[-1]<s:
	p.add()
	if target%p.primes[-1]==0:
		print p.primes[-1]

Example #46
0
 def test_prime(self) -> None:
     self.assertEqual(list(prime(13)),[1,2,3,5,7,11,13])
def i4_to_van_der_corput_test():

    #*****************************************************************************80
    #
    ## I4_TO_VAN_DER_CORPUT_TEST tests I4_TO_VAN_DER_CORPUT.
    #
    #  Licensing:
    #
    #    This code is distributed under the GNU LGPL license.
    #
    #  Modified:
    #
    #    12 May 2015
    #
    #  Author:
    #
    #    John Burkardt
    #
    import numpy as np
    from prime import prime

    n_prime = 5
    n_test = 10

    print ''
    print 'I4_TO_VAN_DER_CORPUT_TEST'
    print '  I4_TO_VAN_DER_CORPUT computes the elements'
    print '  of a van der Corput sequence.'
    print '  The sequence depends on the prime numbers used'
    print '  as a base.'
    print ''
    print '  Bases:'
    print ''
    print ''
    for j in range(1, n_prime + 1):
        print '        %6d' % prime(j),
    print ''
    print ''

    h = np.zeros(n_prime)

    for i in range(0, n_test):
        for j in range(1, n_prime + 1):
            jm1 = j - 1
            p = prime(j)
            h[jm1] = i4_to_van_der_corput(i, p)

        print '  %2d' % (i),
        for j in range(1, n_prime + 1):
            jm1 = j - 1
            print '  %12f' % (h[jm1]),
        print ''


#
#  Terminate.
#
    print ''
    print 'I4_TO_VAN_DER_CORPUT_TEST'
    print '  Normal end of execution.'

    return
Example #48
0
 def test_middle_positive_numbers(self, number=20):
   results = prime(number)
   self.assertTrue(results == [2, 3, 5, 7, 11, 13, 17, 19])
Example #49
0
def test():
    numb = input("Enter a number")
    numb = int(numb)
    print('Begin in Python')
    print("Result: ", prime.prime(numb))
    print('Back to python')
Example #50
0
# A program that returns all palindromic primes between two integers supplied as input (start and end points are included)
# Written by: Laene van Niekerk
# VNKLAE001

import sys
sys.setrecursionlimit (30000)
import prime

n = eval(input("Enter the starting point N:\n"))
m = eval(input("Enter the ending point M:\n"))
print("The palindromic primes are:\n", end="")

lst = []        # Empty is to append palindromes to
    
def palindrome(primes):     # Test to see if the prime number is a palindrome
    string = str(primes[0])
    reverse = string[::-1]
    if len(primes) == 1:    # If there is only one number
        if string == reverse:
            lst.append(primes[0])      
    elif string == reverse:     # If the number is a palindrome
        lst.append(primes[0])   # Appends number to list
        palindrome(primes[1:])  # Move on to rest of the list
    else:
        palindrome(primes[1:])  # If not palindrome, move onto next number
            
list_of_primes = prime.prime(n,m)
palindrome(list_of_primes)

for i in lst:
    print(i)
Example #51
0
def compute(d):
    for i in permutations(d):
        if prime(int(i)):
            return i
    return compute(d[1:])