Example #1
0
 def __init__(self, n, failureProb = 1e-5):
     #total size of bit array
     self.n = n
     self.m = nextPrime((int)(-n * log(failureProb) / (log(2)**2)))
     self.filter = bitarray()
     self.filter.append(False)
     self.filter = self.m * self.filter
     self.k = (int)(self.m*(log(2))/self.n)
     seed()
     self.hashes = [(randint(0,self.m-1),randint(0,self.m-1)) for i in range(0,self.k)]
Example #2
0
 def __init__(self, n, failureProb=1e-5):
     #total size of bit array
     self.n = n
     self.m = nextPrime((int)(-n * log(failureProb) / (log(2)**2)))
     self.filter = bitarray()
     self.filter.append(False)
     self.filter = self.m * self.filter
     self.k = (int)(self.m * (log(2)) / self.n)
     seed()
     self.hashes = [(randint(0, self.m - 1), randint(0, self.m - 1))
                    for i in range(0, self.k)]
Example #3
0
#!/usr/bin/python

# https://projecteuler.net/problem=7

import primes
target = 10001

val=2
for i in range(1,target):
    val = primes.nextPrime(val)

print val
Example #4
0
#!/usr/bin/python

# https://projecteuler.net/problem=3

import primes

target = 13195
target = 600851475143


factor = 2

while target>1:
    if target%factor==0:
        target/=factor
    else:
        factor = primes.nextPrime(factor)

print factor
Example #5
0
File: 60.py Project: cconnett/euler
def successors((primeset, newprime)):
    nextprime = nextPrime(newprime) #primes(newprime).next()
    succs = [(primeset, nextprime)]
    if compatible(primeset, newprime):
        succs.append((primeset+[newprime], nextprime))
    return succs