Example #1
0
    def render(self, batch, group=None):

        self.calc_item_size()
        self.calc_geometry()
        self.frame.set_geometry(self.x, self.y, self.frame.width,
                                self.frame.height)
        print self, self.frame
        self.frame.render(batch, group=group)
        chevron = Triangle([(self.x + self.frame.width - 12,
                             self.y + round(self.frame.height * 0.75)),
                            (self.x + self.frame.width - 8,
                             self.y + round(self.frame.height * 0.25)),
                            (self.x + self.frame.width - 4,
                             self.y + round(self.frame.height * 0.75))])
        chevron.render(batch, group=group)
        if self.selection:
            l_x, l_y = self.calc_label_position(self.selection.label)
            label = pyglet.text.Label(self.selection.text,
                                      x=l_x,
                                      y=l_y,
                                      batch=batch,
                                      group=group)
            self.dispatch_event('on_listbox_select', self.selection)

        if self.expanded:
            for item in self.options:
                item.render(batch, group=group)
Example #2
0
 def __init__(self, *args, **kwargs):
     super(MyWindow, self).__init__(*args, **kwargs)
     self.set_minimum_size(400, 300)
     # pyglet.gl.glClearColor(0.2, 0.3, 0.2, 1.0)
     self.line = Line()
     self.triangle = Triangle(100, 100)
     self.point = Point(200, 200)
     self.objects = []
     self.food_manager = FoodManager()
     self.creature_manager = CreatureManager()
     self.life_breath()
Example #3
0
def flatten_fastBVH(root: TreeBox):
    flat_boxes = [FastBox(ZEROS, ZEROS) for _ in range(0)]
    flat_triangles = [
        Triangle(ZEROS, ZEROS, ZEROS, WHITE, False, Material.DIFFUSE.value)
        for _ in range(0)
    ]
    emitters = [
        Triangle(ZEROS, ZEROS, ZEROS, WHITE, False, Material.DIFFUSE.value)
        for _ in range(0)
    ]
    box_queue = [root]
    while box_queue:
        # pop
        box = box_queue[0]
        # transform TreeBox to FastBox
        fast_box = FastBox(box.min, box.max)
        if box.right is not None and box.left is not None:
            # if inner node (non-leaf), left is an index in flat_boxes
            fast_box.left = len(flat_boxes) + len(box_queue)
            # right will always be at left + 1, so use right as inner-vs-leaf flag
            fast_box.right = 0
            # push children to queue
            box_queue.append(box.left)
            box_queue.append(box.right)
        else:
            # if leaf, left is index into flat_triangles
            fast_box.left = len(flat_triangles)

            for triangle in box.triangles:
                if triangle.emitter:
                    emitters.append(triangle)
                flat_triangles.append(triangle)

            # so now flat_triangles[left:right] is the triangles in this box. nonzero right signals leaf in traverse.
            fast_box.right = len(flat_triangles)

        flat_boxes.append(fast_box)
        # todo: is this queue efficient? the pointer moves arbitrarily forward in memory...
        box_queue = box_queue[1:]
    return flat_boxes
Example #4
0
def load_obj(path, material=Material.DIFFUSE.value):
    obj = objloader.Obj.open(path)
    logger.info('model %s has %d vertices and %d faces', path, len(obj.vert), len(obj.face)/3)
    if obj.norm:
        logger.info('model %s specifies normal vectors', path)
    if obj.text:
        logger.info('model %s is texture-mapped', path)

    packed_model = obj.pack()
    # build the vertices and triangles
    vertices = numba.typed.List()
    for vertex in obj.vert:
        vertices.append(point(*vertex))
    triangles = numba.typed.List()
    for (v0, _, _), (v1, _, _), (v2, _, _) in zip(*[iter(obj.face)]*3):
        triangles.append(Triangle(vertices[v0 - 1], vertices[v1 - 1], vertices[v2 - 1], material=material))
    return triangles
Example #5
0
def load_obj(path, material=Material.DIFFUSE.value):
    obj = objloader.Obj.open(path)
    logger.info('model %s has %d vertices and %d faces', path, len(obj.vert),
                len(obj.face) / 3)
    if obj.norm:
        logger.info('model %s specifies normal vectors', path)
    if obj.text:
        logger.info('model %s is texture-mapped', path)
    # build the vertices and triangles
    verts = [point(*vert) for vert in obj.vert]
    triangles = [
        Triangle(verts[v0 - 1],
                 verts[v1 - 1],
                 verts[v2 - 1],
                 material=material)
        for (v0, _, _), (v1, _, _), (v2, _, _) in zip(*[iter(obj.face)] * 3)
    ]
    return triangles
Example #6
0
def big_triangle():
    return Triangle(ZEROS, UNIT_X * 5, UNIT_Y * 5)
Example #7
0
def wrong_handed_triangle():
    return Triangle(ZEROS, UNIT_Y, UNIT_X)
Example #8
0
def basic_triangle():
    return Triangle(ZEROS, UNIT_X, UNIT_Y)
Example #9
0
def triangles_for_box(box: Box, material=Material.DIFFUSE.value):
    left_bottom_back = box.min
    right_bottom_back = box.min + box.span * UNIT_X
    left_top_back = box.min + box.span * UNIT_Y
    left_bottom_front = box.min + box.span * UNIT_Z

    right_top_front = box.max
    left_top_front = box.max - box.span * UNIT_X
    right_bottom_front = box.max - box.span * UNIT_Y
    right_top_back = box.max - box.span * UNIT_Z

    shrink = np.array([.5, .95, .5], dtype=np.float32)

    tris = [
        # back wall
        Triangle(left_bottom_back, right_bottom_back, right_top_back, color=RED, material=material),
        Triangle(left_bottom_back, right_top_back, left_top_back, color=RED, material=material),
        # left wall
        Triangle(left_bottom_back, left_top_front, left_bottom_front, color=BLUE, material=material),
        Triangle(left_bottom_back, left_top_back, left_top_front, color=BLUE, material=material),
        # right wall
        Triangle(right_bottom_back, right_bottom_front, right_top_front, color=GREEN, material=material),
        Triangle(right_bottom_back, right_top_front, right_top_back, color=GREEN, material=material),
        # front wall
        Triangle(left_bottom_front, right_top_front, right_bottom_front, color=CYAN, material=material),
        Triangle(left_bottom_front, left_top_front, right_top_front, color=CYAN, material=material),
        # floor
        Triangle(left_bottom_back, right_bottom_front, right_bottom_back, color=WHITE, material=material),
        Triangle(left_bottom_back, left_bottom_front, right_bottom_front, color=WHITE, material=material),
        # ceiling
        Triangle(left_top_back, right_top_back, right_top_front, color=WHITE, material=material),
        Triangle(left_top_back, right_top_front, left_top_front, color=WHITE, material=material),
        # ceiling light # NB this assumes box is centered on the origin, at least wrt x and z
        Triangle(left_top_back * shrink, right_top_back * shrink, right_top_front * shrink, color=WHITE, emitter=True),
        Triangle(left_top_back * shrink, right_top_front * shrink, left_top_front * shrink, color=WHITE, emitter=True),
    ]
    return tris
Example #10
0
    def __init__(self,
                 x=0,
                 y=0,
                 random=False,
                 show_vision=False,
                 dna=None,
                 **kwargs):
        self.id = uuid.uuid4()
        self.life = 100
        self._alive = True
        self.genes = 15
        self.age = 0
        self.memory_s = []
        self.memory_a = []
        self.all_memory = None
        if kwargs.get('old_memory', None):
            self.all_memory = [x[:] for x in kwargs['old_memory']]
        if not dna:
            layers = randint(2, 100)
            neurons = randint(2, 100)
            iters = randint(2, 100)
            memorysize = randint(2, 100)
            # [Layers, neurons, iters , memory]
            self.dna = [layers, neurons, iters, memorysize]
        else:
            self.dna = dna

        self._hidden_layers = [self.dna[1] for _ in range(self.dna[0])]
        self._max_memory = self.dna[3]
        self.brain = MLPRegressor(activation='logistic',
                                  alpha=1e-05,
                                  batch_size='auto',
                                  beta_1=0.9,
                                  beta_2=0.999,
                                  early_stopping=False,
                                  epsilon=1e-08,
                                  hidden_layer_sizes=self._hidden_layers,
                                  learning_rate='constant',
                                  learning_rate_init=0.001,
                                  max_iter=self.dna[2] * 100,
                                  momentum=0.9,
                                  nesterovs_momentum=True,
                                  power_t=0.5,
                                  random_state=1,
                                  shuffle=True,
                                  solver='adam',
                                  tol=0.0001,
                                  validation_fraction=0.1,
                                  verbose=False,
                                  warm_start=False)

        if random:
            x = randint(0, WIDTH)
            y = randint(0, HEIGHT)
        self.body = Triangle(x=x, y=y, random=False)
        self.vision = Circle(x=x, y=y, radius=VISION_RADIUS)
        self.show_vision = show_vision
        self.position = Vector(x, y)
        self.velocity = Vector(0, 0)
        self.aceleration = Vector(0, 0)
        self.mass = 10
        self.visible_objects = []
        self.last_action = [0, 0, 0]

        if self.all_memory is None:
            start_sensor = [[randint(-5, 5), randint(-5, 5)]
                            for _ in range(10)]
            start_out = [[randint(0, 1),
                          randint(-5, 5),
                          randint(-5, 5)] for _ in range(10)]
            self.all_memory = [start_sensor, start_out]
        else:
            if np.random.random() < RANDOM_MEMORY:
                # creating some random memories
                self.all_memory[0] += [[randint(-5, 5), randint(-5, 5)]]
                self.all_memory[1] += [[
                    randint(0, 1),
                    randint(-5, 5),
                    randint(-5, 5)
                ]]
            start_sensor = self.all_memory[0]
            start_out = self.all_memory[1]
        try:
            self.brain.fit(start_sensor, start_out)
        except:
            print(start_sensor, start_out)
            raise ValueError
Example #11
0
class Animal:
    def __init__(self,
                 x=0,
                 y=0,
                 random=False,
                 show_vision=False,
                 dna=None,
                 **kwargs):
        self.id = uuid.uuid4()
        self.life = 100
        self._alive = True
        self.genes = 15
        self.age = 0
        self.memory_s = []
        self.memory_a = []
        self.all_memory = None
        if kwargs.get('old_memory', None):
            self.all_memory = [x[:] for x in kwargs['old_memory']]
        if not dna:
            layers = randint(2, 100)
            neurons = randint(2, 100)
            iters = randint(2, 100)
            memorysize = randint(2, 100)
            # [Layers, neurons, iters , memory]
            self.dna = [layers, neurons, iters, memorysize]
        else:
            self.dna = dna

        self._hidden_layers = [self.dna[1] for _ in range(self.dna[0])]
        self._max_memory = self.dna[3]
        self.brain = MLPRegressor(activation='logistic',
                                  alpha=1e-05,
                                  batch_size='auto',
                                  beta_1=0.9,
                                  beta_2=0.999,
                                  early_stopping=False,
                                  epsilon=1e-08,
                                  hidden_layer_sizes=self._hidden_layers,
                                  learning_rate='constant',
                                  learning_rate_init=0.001,
                                  max_iter=self.dna[2] * 100,
                                  momentum=0.9,
                                  nesterovs_momentum=True,
                                  power_t=0.5,
                                  random_state=1,
                                  shuffle=True,
                                  solver='adam',
                                  tol=0.0001,
                                  validation_fraction=0.1,
                                  verbose=False,
                                  warm_start=False)

        if random:
            x = randint(0, WIDTH)
            y = randint(0, HEIGHT)
        self.body = Triangle(x=x, y=y, random=False)
        self.vision = Circle(x=x, y=y, radius=VISION_RADIUS)
        self.show_vision = show_vision
        self.position = Vector(x, y)
        self.velocity = Vector(0, 0)
        self.aceleration = Vector(0, 0)
        self.mass = 10
        self.visible_objects = []
        self.last_action = [0, 0, 0]

        if self.all_memory is None:
            start_sensor = [[randint(-5, 5), randint(-5, 5)]
                            for _ in range(10)]
            start_out = [[randint(0, 1),
                          randint(-5, 5),
                          randint(-5, 5)] for _ in range(10)]
            self.all_memory = [start_sensor, start_out]
        else:
            if np.random.random() < RANDOM_MEMORY:
                # creating some random memories
                self.all_memory[0] += [[randint(-5, 5), randint(-5, 5)]]
                self.all_memory[1] += [[
                    randint(0, 1),
                    randint(-5, 5),
                    randint(-5, 5)
                ]]
            start_sensor = self.all_memory[0]
            start_out = self.all_memory[1]
        try:
            self.brain.fit(start_sensor, start_out)
        except:
            print(start_sensor, start_out)
            raise ValueError

    def rotate(self):
        angle = self.position.angle
        self.body.rotate(angle=angle)

    def move(self, vel):
        self.spend_energy(0.1)
        self.velocity = vel
        self.position += vel
        if self.position.x >= WIDTH:
            self.position.x = WIDTH
        if self.position.y >= HEIGHT:
            self.position.y = HEIGHT
        if self.position.x <= 0:
            self.position.x = 0
        if self.position.y <= 0:
            self.position.y = 0
        self.body.move(self.position, vel)

    def check_near_food(self, foods):
        creature_path = pltpath.Path(
            [*np.array_split(self.vision.vertex, self.vision.points)])
        food_positions = [food.body.vertex for food in foods]
        collide = creature_path.contains_points(food_positions)
        if any(collide):
            food_positions = np.array(list(foods))
            near_food = food_positions[collide]
            self.visible_objects = near_food
        else:
            self.visible_objects = []
        # print(self.visible_objects)

    def check_collision(self, food_manager):
        foods = food_manager.foods.values()
        body_path = pltpath.Path([*np.array_split(self.body.vertex2D, 3)])
        food_positions = [food.body.vertex for food in foods]
        collide = body_path.contains_points(food_positions)
        if any(collide):
            food_positions = np.array(list(foods))
            target_food = food_positions[collide]
            energy = food_manager.consume_food(target_food[0].id)
            self.eat(energy)
        else:
            target_food = []
        # print(self.life)

    def breath(self):
        self.spend_energy(0.1)

    def eat(self, energy):
        self.spend_energy(0.1)
        self.life += energy
        max_m = self._max_memory * 2
        if len(self.memory_s) < max_m and len(self.memory_a) < max_m:
            self.memory_s += [
                list(self.visible_objects[0].position - self.position)
            ]
            self.memory_a += [self.last_action]

    def spend_energy(self, energy):
        self.life -= energy

    def update(self, food_manager):
        self.breath()
        foods = food_manager.foods.values()
        if self.show_vision:
            self.vision.update(self.position[0], self.position[1])
            pyglet.graphics.draw(*self.vision.vertex_list)
        self.check_near_food(foods)
        self.check_collision(food_manager)
        saida = None
        if any(self.visible_objects):
            saida = self.brain.predict([self.visible_objects[0].position._v])
        self.take_action(saida)

    def take_action(self, trial):
        actions = {
            0: self.walk,
            1: self.think,
        }
        if trial is not None:
            trial = np.round(trial)
            # print(trial)
            try:
                choice = actions.get(int(trial[0][0]), self.walk)
                choice(trial[0][1:])
            except:
                choice = actions[0]
                choice()
                traceback.print_exc()
                raise ValueError
        else:  # if no trial, walk
            choice = actions[0]
            choice()

    def walk(self, direction=None):
        self.spend_energy(0.1)

        if direction is None:
            acc = Vector(randint(-MAX_SPEED, MAX_SPEED),
                         randint(-MAX_SPEED, MAX_SPEED))
        else:
            acc = Vector(*direction)
        if self.velocity.x >= MAX_SPEED and acc.x < 0:
            self.velocity.x += acc.x
        elif self.velocity.x <= -MAX_SPEED and acc.x > 0:
            self.velocity.x += acc.x
        if self.velocity.y >= MAX_SPEED and acc.y < 0:
            self.velocity.y += acc.y
        elif self.velocity.y <= -MAX_SPEED and acc.y > 0:
            self.velocity.y += acc.y
        if -MAX_SPEED <= self.velocity.x <= MAX_SPEED:
            self.velocity.x += acc.x
        if -MAX_SPEED <= self.velocity.y <= MAX_SPEED:
            self.velocity.y += acc.y
        self.last_action = [0, acc[0], acc[1]]
        self.move(self.velocity)
        # print(f" velocidade: {self.velocity}, acc: {acc}")

    def think(self, *args):
        # self.think_count += 1
        self.spend_energy(0.1)
        self.last_action = [1, 0, 0]
        if any(self.memory_a) or any(self.memory_s):
            # print("memoria de entrada", self.Memory_s)
            # print("memoria de saida", self.Memory_a)
            try:
                self.brain.partial_fit(self.memory_s, self.memory_a)
            except:
                traceback.print_exc()
                print("Memoria", self.memory_a, self.memory_s)
                raise ValueError
            self.remember()
            self.memory_s = []
            self.memory_a = []

    def remember(self):

        # put good lessons on memory
        self.all_memory[0] += self.memory_s
        self.all_memory[1] += self.memory_a

        # check memory capacity, forget the long past
        if self.all_memory:
            while len(self.all_memory[0]) > self._max_memory:
                self.all_memory[0].pop(0)
            while len(self.all_memory[1]) > self._max_memory:
                self.all_memory[1].pop(0)