Common_data = RNA_data_scaled[np.intersect1d(osmFISH_data_scaled.columns,RNA_data_scaled.columns)] n_factors = 30 n_pv = 30 n_pv_display = 30 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation( n_factors = n_factors, n_pv = n_pv, dim_reduction = dim_reduction, dim_reduction_target = dim_reduction_target ) pv_FISH_RNA.fit(Common_data,osmFISH_data_scaled[Common_data.columns]) fig = plt.figure() sns.heatmap(pv_FISH_RNA.initial_cosine_similarity_matrix_[:n_pv_display,:n_pv_display], cmap='seismic_r', center=0, vmax=1., vmin=0) plt.xlabel('osmFISH',fontsize=18, color='black') plt.ylabel('Allen_SSp',fontsize=18, color='black') plt.xticks(np.arange(n_pv_display)+0.5, range(1, n_pv_display+1), fontsize=12) plt.yticks(np.arange(n_pv_display)+0.5, range(1, n_pv_display+1), fontsize=12, rotation='horizontal') plt.gca().set_ylim([n_pv_display,0]) plt.show() plt.figure() sns.heatmap(pv_FISH_RNA.cosine_similarity_matrix_[:n_pv_display,:n_pv_display], cmap='seismic_r', center=0, vmax=1., vmin=0) for i in range(n_pv_display-1):
for i in Common_data.columns: print(i) start = tm.time() from principal_vectors import PVComputation n_factors = 50 n_pv = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation(n_factors=n_factors, n_pv=n_pv, dim_reduction=dim_reduction, dim_reduction_target=dim_reduction_target) pv_FISH_RNA.fit(Common_data.drop(i, axis=1), seqFISH_data_scaled[Common_data.columns].drop(i, axis=1)) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:, 0:Effective_n_pv] Common_data_t = Common_data.drop(i, axis=1).dot(S) FISH_exp_t = seqFISH_data_scaled[Common_data.columns].drop(i, axis=1).dot(S) precise_time.append(tm.time() - start) start = tm.time() nbrs = NearestNeighbors(n_neighbors=50, algorithm='auto', metric='cosine').fit(Common_data_t) distances, indices = nbrs.kneighbors(FISH_exp_t)
n_pv = i dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation( n_factors = n_factors, n_pv = n_pv, dim_reduction = dim_reduction, dim_reduction_target = dim_reduction_target ) source_data = RNA_data_scaled[Variance.index[0:i]] target_data = Starmap_data_scaled[Variance.index[0:i]] pv_FISH_RNA.fit(source_data,target_data) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:,0:Effective_n_pv] RNA_data_t = source_data.dot(S) FISH_exp_t = target_data.dot(S) nbrs = NearestNeighbors(n_neighbors=50, algorithm='auto', metric = 'cosine').fit(RNA_data_t) distances, indices = nbrs.kneighbors(FISH_exp_t) for j in range(0,Starmap_data.shape[0]): weights = 1-(distances[j,:][distances[j,:]<1])/(np.sum(distances[j,:][distances[j,:]<1]))
for i in Common_data.columns: print(i) start = tm.time() from principal_vectors import PVComputation n_factors = 50 n_pv = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation(n_factors=n_factors, n_pv=n_pv, dim_reduction=dim_reduction, dim_reduction_target=dim_reduction_target) pv_FISH_RNA.fit(Common_data.drop(i, axis=1), Starmap_data_scaled[Common_data.columns].drop(i, axis=1)) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:, 0:Effective_n_pv] Common_data_t = Common_data.drop(i, axis=1).dot(S) FISH_exp_t = Starmap_data_scaled[Common_data.columns].drop(i, axis=1).dot(S) precise_time.append(tm.time() - start) start = tm.time() nbrs = NearestNeighbors(n_neighbors=50, algorithm='auto', metric='cosine').fit(Common_data_t) distances, indices = nbrs.kneighbors(FISH_exp_t)
Common_data = RNA_data_scaled[np.intersect1d(Starmap_data_scaled.columns, RNA_data_scaled.columns)] n_factors = 50 n_pv = 50 n_pv_display = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation(n_factors=n_factors, n_pv=n_pv, dim_reduction=dim_reduction, dim_reduction_target=dim_reduction_target) pv_FISH_RNA.fit(Common_data, Starmap_data_scaled[Common_data.columns]) fig = plt.figure() sns.heatmap(pv_FISH_RNA. initial_cosine_similarity_matrix_[:n_pv_display, :n_pv_display], cmap='seismic_r', center=0, vmax=1., vmin=0) plt.xlabel('Starmap', fontsize=18, color='black') plt.ylabel('Allen_VISp', fontsize=18, color='black') plt.xticks(np.arange(n_pv_display) + 0.5, range(1, n_pv_display + 1), fontsize=12) plt.yticks(np.arange(n_pv_display) + 0.5, range(1, n_pv_display + 1),
Common_data = RNA_data_scaled[np.intersect1d(Starmap_data_scaled.columns, RNA_data_scaled.columns)] n_factors = 50 n_pv = 50 n_pv_display = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation(n_factors=n_factors, n_pv=n_pv, dim_reduction=dim_reduction, dim_reduction_target=dim_reduction_target) pv_FISH_RNA.fit(Common_data, Starmap_data_scaled[Common_data.columns]) plt.figure(figsize=(4, 4)) sns.heatmap(pv_FISH_RNA. initial_cosine_similarity_matrix_[:n_pv_display, :n_pv_display], cmap='seismic_r', center=0, vmax=1., vmin=0) plt.xlabel('Starmap', fontsize=12, color='black') plt.ylabel('Allen_VISp', fontsize=12, color='black') plt.xticks(np.arange(4, n_pv_display, 5) + 0.5, range(5, n_pv_display + 1, 5), fontsize=8) plt.yticks(np.arange(4, n_pv_display, 5) + 0.5, range(5, n_pv_display + 1, 5),