def __init__(self): self.action_space = env.action_space.n # number of actions self.discount_rate = 0.99 self.stack_frames = 4 # number of frames stacked self.lr = 2.5e-5 self.model = self.build_deep_q_model() # build the main network self.target_model = self.build_deep_q_model( ) # build the target network mask_shape = (1, env.action_space.n) self.batch_size = 32 # number of batches to learn from self.priority_replay_size = 1000000 # max replay memory size self.priority_replay = Memory( self.priority_replay_size) # create the replay memory self.exploration_rate = AnnealingVariable( 1., .01, 400000) # exploration rate (start_value, final_value, n_steps) self.mask = np.ones( mask_shape, dtype=np.float32 ) # mask used in the training to train only the q values for which the agent performed and action self.one_hot = np.eye(env.action_space.n, dtype=np.float32) self.update_target_frequency = 10000 # update target every self.replay_frequency = 4 # learn from memories frequency
class DQNAgent: def __init__(self): self.action_space = env.action_space.n # number of actions self.discount_rate = 0.99 self.stack_frames = 4 # number of frames stacked self.lr = 2.5e-5 self.model = self.build_deep_q_model() # build the main network self.target_model = self.build_deep_q_model( ) # build the target network mask_shape = (1, env.action_space.n) self.batch_size = 32 # number of batches to learn from self.priority_replay_size = 1000000 # max replay memory size self.priority_replay = Memory( self.priority_replay_size) # create the replay memory self.exploration_rate = AnnealingVariable( 1., .01, 400000) # exploration rate (start_value, final_value, n_steps) self.mask = np.ones( mask_shape, dtype=np.float32 ) # mask used in the training to train only the q values for which the agent performed and action self.one_hot = np.eye(env.action_space.n, dtype=np.float32) self.update_target_frequency = 10000 # update target every self.replay_frequency = 4 # learn from memories frequency # creates the network and returns it def build_deep_q_model(self, image_size: tuple = (84, 84)) -> keras.Model: # weights initializer - he init initializer = keras.initializers.VarianceScaling(scale=2.0) # input layer - takes (84,84,84,4) images cnn_input = keras.layers.Input((*image_size, self.stack_frames), name="cnninpt") # mask input - one hot when want only q_value for particular action mask_input = keras.layers.Input((self.action_space, ), name="mask") # first Conv2D layer cnn = keras.layers.Conv2D(32, 8, strides=4, activation="relu", padding='valid', kernel_initializer=initializer)(cnn_input) # second Conv2D layer cnn = keras.layers.Conv2D(64, 4, strides=2, activation="relu", padding='valid', kernel_initializer=initializer)(cnn) # third Conv2D layer cnn = keras.layers.Conv2D(64, 3, strides=1, activation="relu", padding='valid', kernel_initializer=initializer)(cnn) # flatten the kernels from previous layers cnn = keras.layers.Flatten()(cnn) # fully connected layer cnn = keras.layers.Dense(512, activation="relu", kernel_initializer=initializer)(cnn) # output layer, q_values for every action in enviroment cnn = keras.layers.Dense(self.action_space, name="output")(cnn) # multiply output by mask to give true output output = keras.layers.Multiply()([cnn, mask_input]) # create the model model = keras.Model(inputs=[cnn_input, mask_input], outputs=output) # add loss function and method of optimization model.compile(loss=huber_loss, optimizer=keras.optimizers.Adam(lr=self.lr)) print(model.summary()) return model # samples a batch of #batch_size from the priority replay def sample(self): batch = self.priority_replay.sample( self.batch_size) # sample batch according to priorities X_state = [None] * len(batch) # create empty list #batch_size X_action = [None] * len(batch) X_reward = [None] * len(batch) X_done = [None] * len(batch) X_next_state = [None] * len(batch) # for each batch - retrieve the particualar entries for i in range(len(batch)): o = batch[i][1] X_state[i] = np.array(o[0], copy=False) X_action[i] = o[1] X_reward[i] = o[2] X_done[i] = o[3] X_next_state[i] = np.array(o[4], copy=False) return np.array(X_state), np.array(X_action), np.array( X_reward), np.array(X_done), np.array(X_next_state), batch # train on the samples in memory def learn_from_memories(self): X_state, X_action, X_reward, X_done, X_next_state, batch = self.sample( ) # repeat the base mask (all actions) for all the samples in the batch mask = np.repeat(self.mask, len(X_state), axis=0) # q for the next_state is 0 if episode has ended or else the max of q values according to the target network q_next = np.max(self.target_model.predict_on_batch( [X_next_state, mask]), axis=1) q_next[X_done] = 0.0 # the q predictions on batch pred = self.model.predict_on_batch([X_state, self.mask]) # the q predictions for each action taken only pred_action = pred[range(pred.shape[0]), X_action] # calculate the target / true values target_q = X_reward + self.discount_rate * q_next # get the error - priorirty error = abs(target_q - pred_action) # update errors - priorities for i in range(len(batch)): idx = batch[i][0] self.priority_replay.update(idx, error[i]) # assign target_q to the appropriate true_q columns for which the agent performed an action # all other true q values are 0 and the agent is not trained based on their value true_q = np.zeros((len(X_state), env.action_space.n), dtype=np.float32) # for every row, for the columns the agent picked that action assign target_q true_q[range(true_q.shape[0]), X_action] = target_q # train only on actions the agent chose - One hot mask from action batch return self.model.fit([X_state, self.one_hot[X_action]], true_q, verbose=0, epochs=1) # helper function to initialize the priority replay with init_size samples def init_priority_replay(self, init_size=50000): while init_size > 0: done = False state = env.reset() # reset the env while not done: # behave randomly action = env.action_space.sample() next_state, reward, done, _ = env.step(action) # save batch of experience to memory self.save_to_memory(state, action, reward, done, next_state) state = next_state init_size -= 1 # takes the experience and stores it in replay memory def save_to_memory(self, state, action, reward, done, next_state): error = self.get_error(state, action, reward, done, next_state) # find error - priority self.priority_replay.add( error, (state, action, reward, done, next_state)) # save to memory according to priority # behaves epsilon greedily def epsilon_greedy_policy(self, state, epsilon=0.01): if np.random.random() < epsilon: return env.action_space.sample() # pick randomly q_values = self.predict_qvalues(state) return np.argmax(q_values) # pick optimal action - max q(s,a) # calculate the error of prediction def get_error(self, state, action, reward, done, next_state): # q next is 0 for terminal states else predict it from target network if done: q_next = 0.0 else: next_state = np.expand_dims(next_state, axis=0) q_next = self.target_model.predict([next_state, self.mask]) predicted_q = self.predict_qvalues(state) # error = true - predicted for action taken error = abs(reward + self.discount_rate * np.max(q_next) - predicted_q[0, action]) return error # predicts and returns q values from state def predict_qvalues(self, state: np.ndarray): # keras needs first dimension to be batch size even if only one sample state = np.expand_dims(state, axis=0) return self.model.predict([state, self.mask]) # trains the agent for max_steps def train_model(self, max_steps, stats): print("Start Training ") while max_steps > 0: r_per_episode = 0 error = 0 done = False state = env.reset() while not done: # the episode has not ended # find action according to epsilon greedy behaviour with epsilon = exploration rate action = self.epsilon_greedy_policy( state, self.exploration_rate.value) # decrease the exploration rate self.exploration_rate.step() max_steps -= 1 # take the action and observe next observation, reward, done next_state, reward, done, _ = env.step(action) r_per_episode += reward # save this experience to memory self.save_to_memory(state, action, reward, done, next_state) state = next_state # time to train from priority replay if max_steps % self.replay_frequency == 0: hist = self.learn_from_memories() error += hist.history['loss'][0] # time to update the target network if max_steps % self.update_target_frequency == 0: self.target_model.set_weights(self.model.get_weights()) # update stats stats(self, r_per_episode) # save stats at the end of training stats.save_stats() # test the agent for nepisodes def play(self, nepisodes, exploration_rate, stats): rewards_arr = np.zeros(nepisodes) for episode in range(nepisodes): episode_reward = 0 done = False state = env.reset() while not done: env.render() # time.sleep(0.05) action = self.epsilon_greedy_policy(state, exploration_rate) next_state, reward, done, _ = env.step(action) episode_reward += reward state = next_state rewards_arr[episode] = episode_reward stats(self, episode_reward) print(episode_reward) stats.save_stats() return rewards_arr def save_weights(self): print("PRINT") self.model.save_weights("PongDQNWeights.h5") def save_model(self): self.model.save("DqnPongModel.h5") def restore_weights(self): print("Restoring model weights Pong") self.model.load_weights("DqnPongModel.h5")