Example #1
0
def train_four_layer_mnist_victim(
    transform=None,
    batch_size=100,
    num_workers=4,
    rand_split_val=None,
    gpus=None,
    max_epochs=8,
    learning_rate=1e-3,
):
    """Trains a 4-layer fully connected neural network on MNIST data

    Parameters:
        transform: A Torchvision.transforms transformation to be applied to MNIST data
        batch_size: An integer of the size of batches to be trained and tested upon
        num_workers: An integer number of workers assigned to computations
        rand_split_val: An array describing how the val and train data are split
        gpus: An integer num of gpus available to train upon
        max_epochs: An integer of the maximum # of epochs to run
        learning_rate: A float that is the learning rate for the optimizer

    Returns:
        Trained model ready for inference"""

    input_size = 784  # 28*28 or the size of a single image
    targets = 10  # the number of digits any image can possibly represent

    # Uses all available GPUs for computation by default
    if gpus is None:
        gpus = torch.cuda.device_count()

    if transform is None:
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])
    if rand_split_val is None:
        rand_split_val = [55000, 5000]

    # Establish hyperparameters and DataLoaders
    hparams = set_hparams(
        transform,
        batch_size,
        num_workers,
        gpus,
        max_epochs,
        learning_rate,
        input_size,
        targets,
    )

    train_dataloader, val_dataloader, test_dataloader = get_mnist_loaders(
        hparams)

    # Train, test, and convert the model to inference
    mnist_model = train_and_test(FourLayerClassifier, train_dataloader,
                                 val_dataloader, test_dataloader, hparams)
    mnist_model = convert_to_inference(mnist_model)
    return mnist_model
Example #2
0
 def get_substitute_model(self):
     model = train_and_test(
         self.substitute_model_arch,
         self.train_dataloader,
         self.valid_dataloader,
         self.test_dataloader,
         self.hparams,
     )
     model = convert_to_inference(model)
     return model
Example #3
0
def train_mnist_victim(
    transform=None,
    batch_size=100,
    num_workers=4,
    rand_split_val=None,
    gpus=1,
    max_epochs=8,
    learning_rate=1e-3,
):
    """Trains a 3-layer fully connected neural network on MNIST data

    Parameters:
        transform: A Torchvision.transforms transformation to be applied to MNIST data
        batch_size: An integer of the size of batches to be trained and tested upon
        num_workers: An integer number of workers assigned to computations
        rand_split_val: An array describing how the val and train data are split
        gpus: An integer num of gpus available to train upon
        max_epochs: An integer of the maximum # of epochs to run
        learning_rate: A float that is the learning rate for the optimizer

    Returns:
        Trained model ready for inference"""
    # Define hyperparameters implied by the use of MNIST

    input_size = 784
    targets = 10
    if transform is None:
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])
    if rand_split_val is None:
        rand_split_val = [55000, 5000]

    # Establish hyperparameters and DataLoaders
    hparams = set_hparams(
        transform,
        batch_size,
        num_workers,
        # rand_split_val,
        gpus,
        max_epochs,
        learning_rate,
        input_size,
        targets,
    )

    train_dataloader, val_dataloader, test_dataloader = get_mnist_loaders(
        hparams)
    # Train, test, and convert the model to inference
    mnist_model = train_and_test(ThreeLayerClassifier, train_dataloader,
                                 val_dataloader, test_dataloader, hparams)
    mnist_model = convert_to_inference(mnist_model)
    return mnist_model
Example #4
0
 def get_substitute_model(self):
     print("Training the substitute_model")
     model = train_and_test(
         self.substitute_model_arch,
         self.train_dataloader,
         self.valid_dataloader,
         self.test_dataloader,
         self.hparams,
         self.callback,
         self.trainer_args,
     )
     # This may limit the attack to PyTorch Lightning substitutes
     model = convert_to_inference(model)
     return model
Example #5
0
def train_mnist_inversion(
    transform=None,
    batch_size=100,
    forward_model=None,
    num_workers=4,
    rand_split_val=None,
    gpus=None,
    max_epochs=8,
    inversion_params={
        "nz": 10,
        "ngf": 3,
        "affine_shift": 7,
        "truncate": 3
    },
    learning_rate=1e-3,
):
    """Trains a 4-layer fully connected neural network on MNIST data

    Parameters:
        transform: A Torchvision.transforms transformation to be applied to MNIST data
        batch_size: An integer of the size of batches to be trained and tested upon
        num_workers: An integer number of workers assigned to computations
        rand_split_val: An array describing how the val and train data are split
        gpus: An integer num of gpus available to train upon
        max_epochs: An integer of the maximum # of epochs to run
        learning_rate: A float that is the learning rate for the optimizer

    Returns:
        Trained model ready for inference"""

    input_size = 10  # Prediction vector
    targets = 784  # Reconstructed image

    # Uses all available GPUs for computation by default
    if gpus is None:
        gpus = torch.cuda.device_count()

    if transform is None:
        transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ])
    if rand_split_val is None:
        rand_split_val = [55000, 5000]

    # Establish hyperparameters and DataLoaders
    hparams = set_hparams(
        transform,
        batch_size,
        num_workers,
        gpus,
        max_epochs,
        learning_rate,
        input_size,
        targets,
    )

    hparams["rand_split_val"] = rand_split_val
    train_dataloader, val_dataloader, test_dataloader = get_mnist_loaders(
        hparams)
    # Train, test, and convert the model to inference
    inversion_model = train_and_test_inversion(forward_model, InversionModel,
                                               train_dataloader,
                                               val_dataloader, test_dataloader,
                                               hparams, inversion_params)
    inversion_model = convert_to_inference(inversion_model)
    return inversion_model