Example #1
0
def test_shap_rfe(X, y, capsys):

    clf = DecisionTreeClassifier(max_depth=1)
    with pytest.warns(None) as record:
        shap_elimination = ShapRFECV(clf,
                                     random_state=1,
                                     step=1,
                                     cv=2,
                                     scoring='roc_auc',
                                     n_jobs=4)
        shap_elimination = shap_elimination.fit(X, y)

    assert shap_elimination.fitted == True
    shap_elimination._check_if_fitted()

    report = shap_elimination.compute()

    assert report.shape[0] == 3
    assert shap_elimination.get_reduced_features_set(1) == ['col_3']

    ax1 = shap_elimination.plot(show=False)

    # Ensure that number of warnings was 0
    assert len(record) == 0
    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) == 0
Example #2
0
def test_shap_rfe_svm(X, y, capsys):
    """
    Test with ShapRFECV with SVM.
    """
    clf = SVC(C=1, kernel="linear", probability=True)
    with pytest.warns(None) as record:
        shap_elimination = ShapRFECV(clf,
                                     random_state=1,
                                     step=1,
                                     cv=2,
                                     scoring="roc_auc",
                                     n_jobs=4)
        shap_elimination = shap_elimination.fit(X, y)

    assert shap_elimination.fitted
    shap_elimination._check_if_fitted()

    report = shap_elimination.compute()

    assert report.shape[0] == 3
    assert shap_elimination.get_reduced_features_set(1) == ["col_3"]

    _ = shap_elimination.plot(show=False)

    # Ensure that number of warnings was 0
    assert len(record) == 0
    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) == 0
Example #3
0
def test_shap_rfe_cols_to_keep(X, y, capsys):
    """
    Test for shap_rfe_cv with feautures to keep parameter.
    """
    clf = DecisionTreeClassifier(max_depth=1, random_state=1)
    with pytest.warns(None) as record:
        shap_elimination = ShapRFECV(clf,
                                     random_state=1,
                                     step=2,
                                     cv=2,
                                     scoring="roc_auc",
                                     n_jobs=4,
                                     min_features_to_select=1)
        shap_elimination = shap_elimination.fit(
            X, y, columns_to_keep=["col_2", "col_3"])

    assert shap_elimination.fitted
    shap_elimination._check_if_fitted()

    report = shap_elimination.compute()

    assert report.shape[0] == 2
    reduced_feature_set = set(
        shap_elimination.get_reduced_features_set(num_features=2))
    assert reduced_feature_set == set(["col_2", "col_3"])

    # Ensure that number of warnings was 0
    assert len(record) == 0
    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) == 0
Example #4
0
def test_shap_rfe(X, y, sample_weight, capsys):
    """
    Test with ShapRFECV.
    """
    clf = DecisionTreeClassifier(max_depth=1, random_state=1)
    with pytest.warns(None) as record:
        shap_elimination = ShapRFECV(
            clf,
            random_state=1,
            step=1,
            cv=2,
            scoring="roc_auc",
            n_jobs=4,
        )
        shap_elimination = shap_elimination.fit(
            X, y, sample_weight=sample_weight, approximate=True, check_additivity=False
        )

    assert shap_elimination.fitted
    shap_elimination._check_if_fitted()

    report = shap_elimination.compute()

    assert report.shape[0] == 3
    assert shap_elimination.get_reduced_features_set(1) == ["col_3"]

    _ = shap_elimination.plot(show=False)

    # Ensure that number of warnings was 0
    assert len(record) == 0
    # Check if there is any prints
    out, _ = capsys.readouterr()
    assert len(out) == 0