Example #1
0
def test_DenseClassifier():
    """Tests probflow.applications.DenseClassifier"""

    # Data
    x = np.random.randn(100, 5).astype('float32')
    w = np.random.randn(5, 1).astype('float32')
    y = x @ w + 1
    y = np.round(1.0 / (1.0 + np.exp(-y))).astype('float32')

    # Create the model
    model = apps.DenseClassifier([5, 20, 15, 2])

    # Fit the model
    model.fit(x, y, batch_size=10, epochs=11)

    # Predictive functions
    model.predict(x)
Example #2
0
def test_MultinomialDenseClassifier():
    """Tests probflow.applications.DenseClassifier w/ >2 output classes"""

    # Data
    x = np.random.randn(100, 5).astype('float32')
    w = np.random.randn(5, 3).astype('float32')
    b = np.random.randn(1, 3).astype('float32')
    y = x @ w + b
    y = np.argmax(y, axis=1).astype('int32')

    # Create the model
    model = apps.DenseClassifier([5, 20, 15, 3])

    # Fit the model
    model.fit(x, y, batch_size=10, epochs=11)

    # Predictive functions
    model.predict(x)