Example #1
0
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()
    directory = os.path.join(DIRECTORY, f'cv_{i_cv}')
    os.makedirs(directory, exist_ok=True)

    config = Config()
    seed = SEED + i_cv * 5
    train_generator = Generator(seed)
    valid_generator = Generator(seed+1)
    test_generator  = Generator(seed+2)

    N_BINS = 10
    X_train, y_train, w_train = train_generator.generate(*config.CALIBRATED, n_samples=config.N_TRAINING_SAMPLES)
    compute_summaries = HistogramSummaryComputer(n_bins=N_BINS).fit(X_train)

    result_table = [run_iter(compute_summaries, i_cv, i, test_config, valid_generator, test_generator, directory) for i, test_config in enumerate(config.iter_test_config())]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(directory, 'results.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name, result_table, title='Likelihood fit', directory=directory)

    return result_table
Example #2
0
def run_conditional_estimation(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = GeneratorTorch(seed, cuda=args.cuda)
    train_generator = TrainGenerator(train_generator, cuda=args.cuda)
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)

    # SET MODEL
    logger.info('Set up classifier')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        *config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    result_row.update(
        evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    evaluate_summary_computer(model,
                              X_valid,
                              y_valid,
                              w_valid,
                              n_bins=N_BINS,
                              prefix='valid_',
                              suffix='')
    iter_results = [
        run_conditional_estimation_iter(model,
                                        result_row,
                                        i,
                                        test_config,
                                        valid_generator,
                                        test_generator,
                                        n_bins=N_BINS)
        for i, test_config in enumerate(config.iter_test_config())
    ]

    conditional_estimate = pd.concat(iter_results)
    conditional_estimate['i_cv'] = i_cv
    fname = os.path.join(model.results_path, "conditional_estimations.csv")
    conditional_estimate.to_csv(fname)
    logger.info('DONE')
    return conditional_estimate
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = Generator(seed)
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)
    train_generator = TrainGenerator(param_generator, train_generator)

    # SET MODEL
    logger.info('Set up regressor')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        *config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    evaluate_regressor(model, prefix='valid')

    # MEASUREMENT
    result_row['nfcn'] = NCALL
    result_table = [
        run_iter(model, result_row, i, test_config, valid_generator,
                 test_generator)
        for i, test_config in enumerate(config.iter_test_config())
    ]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(model.results_path, 'results.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.results_path)

    logger.info('DONE')
    return result_table
def main():
    # BASIC SETUP
    logger = set_logger()
    args = GB_parse_args(main_description="Training launcher for Gradient boosting on S3D2 benchmark")
    logger.info(args)
    flush(logger)
    # Config
    config = Config()
    config.TRUE = Parameter(r=0.1, lam=2.7, mu=0.1)

    train_generator = Generator(SEED)
    valid_generator = Generator(SEED+1)
    test_generator  = Generator(SEED+2)
    X_test, y_test, w_test = test_generator.generate(*config.TRUE, n_samples=config.N_TESTING_SAMPLES)

    # for nuisance in p(nuisance | data)
    nuisance_param_sample = [param_generator().nuisance_parameters for _ in range(25)]
    average_list = []
    variance_list = []
    all_results = []
    for nuisance_params in nuisance_param_sample:
        logger.info(f"nuisance_params = {nuisance_params}")
        estimator_values = []
        results = {name : value for name, value in zip(config.TRUE.nuisance_parameters_names, nuisance_params)}
        for i_cv in range(N_ITER):
            clf = build_model(args, i_cv)
            parameters = Parameter(*nuisance_params, config.CALIBRATED.interest_parameters)
            print(parameters)
            n_samples = config.N_TRAINING_SAMPLES
            X_train, y_train, w_train = train_generator.generate(*parameters, n_samples=n_samples)
            logger.info(f"Training {clf.full_name}")
            # TODO : is it OK to provide w_train to the classifier or useless ?
            clf.fit(X_train, y_train, w_train)
            compute_summaries = ClassifierSummaryComputer(clf, n_bins=10)
            nll_computer = NLLComputer(compute_summaries, valid_generator, X_test, w_test, config=config)
            compute_nll = lambda mu : nll_computer(*nuisance_params, mu)
            minimizer = get_minimizer(compute_nll)
            results.update(evaluate_minuit(minimizer, [config.TRUE.interest_parameters]))
            all_results.append(results.copy())
            # TODO : Add results to some csv
            estimator_values.append(results['mu'])
        average_list.append(np.mean(estimator_values))
        variance_list.append(np.var(estimator_values))

    logger.info(f"average_list {average_list}")
    logger.info(f"variance_list {variance_list}")
    v_stat = np.mean(variance_list)
    v_syst = np.var(average_list)
    v_total = v_stat + v_syst
    logger.info(f"V_stat = {v_stat}")
    logger.info(f"V_syst = {v_syst}")
    logger.info(f"V_total = {v_total}")
Example #5
0
def main():
    # BASIC SETUP
    logger = set_logger()
    args = REG_parse_args(
        main_description="Training launcher for Regressor on S3D2 benchmark")
    logger.info(args)
    flush(logger)

    # Setup model
    logger.info("Setup model")
    model = build_model(args, 0)
    os.makedirs(model.results_directory, exist_ok=True)

    # Setup data
    logger.info("Setup data")
    config = Config()
    config_table = evaluate_config(config)
    config_table.to_csv(
        os.path.join(model.results_directory, 'config_table.csv'))
    seed = SEED + 99999
    train_generator = TrainGenerator(param_generator, Generator(seed))
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)

    i_cv = 0
    result_row = {'i_cv': i_cv}

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    result_row.update(evaluate_neural_net(model, prefix='valid'))
    evaluate_regressor(model, prefix='valid')
    print_line()

    result_table = [
        run_iter(model, result_row, i, test_config, valid_generator,
                 test_generator)
        for i, test_config in enumerate(config.iter_test_config())
    ]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(model.results_directory, 'results.csv'))

    logger.info('Plot params')
    param_names = [CALIB_PARAM_NAME]
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.results_directory)

    logger.info('DONE')
Example #6
0
def run_estimation(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = Generator(seed)
    train_generator = TrainGenerator(param_generator, train_generator)
    valid_generator = Generator(seed+1)
    test_generator  = Generator(seed+2)

    # SET MODEL
    logger.info('Set up classifier')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_pivot(model, train_generator, config.N_TRAINING_SAMPLES*N_AUGMENT, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(*config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    result_row.update(evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    calib_r = load_calib_r(DATA_NAME, BENCHMARK_NAME)
    calib_lam = load_calib_lam(DATA_NAME, BENCHMARK_NAME)
    evaluate_summary_computer(model, X_valid, y_valid, w_valid, n_bins=N_BINS, prefix='valid_', suffix='')
    iter_results = [run_estimation_iter(model, result_row, i, test_config, valid_generator, test_generator, calib_r, calib_lam, n_bins=N_BINS)
                    for i, test_config in enumerate(config.iter_test_config())]
    result_table = pd.DataFrame(iter_results)
    result_table.to_csv(os.path.join(model.results_path, 'estimations.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name, result_table, title=model.full_name, directory=model.results_path)

    logger.info('DONE')
    return result_table
Example #7
0
def run_iter(i_cv, i_iter, config, seed, directory):
    logger = logging.getLogger()
    logger.info('-' * 45)
    logger.info(f'iter : {i_iter}')
    result_row = dict(i_cv=i_cv, i=i_iter)
    iter_directory = os.path.join(directory, f'iter_{i_iter}')
    os.makedirs(iter_directory, exist_ok=True)

    logger.info(f"True Parameters   = {config.TRUE}")
    suffix = f'-mu={config.TRUE.mu:1.2f}_r={config.TRUE.r}_lambda={config.TRUE.lam}'
    generator = Generator(seed)  # test_generator
    data, label = generator.sample_event(*config.TRUE,
                                         size=config.N_TESTING_SAMPLES)
    result_row['n_test_samples'] = config.N_TESTING_SAMPLES
    debug_label(label)

    compute_nll = lambda r, lam, mu: generator.nll(data, r, lam, mu)
    plot_nll_around_min(compute_nll, config.TRUE, iter_directory, suffix)

    logger.info('Prepare minuit minimizer')
    minimizer = get_minimizer(compute_nll, config.CALIBRATED,
                              config.CALIBRATED_ERROR)
    minimizer.precision = None
    result_row.update(
        evaluate_minuit(minimizer, config.TRUE, iter_directory, suffix=suffix))
    return result_row
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    # train_generator = Generator(seed)
    # valid_generator = Generator(seed+1)
    test_generator  = Generator(seed+2)

    # SET MODEL
    # logger.info('Set up classifier')
    model = build_model(args, i_cv)
    # flush(logger)

    # TRAINING / LOADING
    # train_or_load_classifier(model, train_generator, config.CALIBRATED, config.N_TRAINING_SAMPLES, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    # X_valid, y_valid, w_valid = valid_generator.generate(*config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    # result_row.update(evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    N_BINS = 10
    # evaluate_summary_computer(model, X_valid, y_valid, w_valid, n_bins=N_BINS, prefix='valid_', suffix='')
    result_table = [run_iter(model, result_row, i, i_cv, args, test_config, test_generator, n_bins=N_BINS)
                    for i, test_config in enumerate(config.iter_test_config())]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(model.results_path, 'results.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name, result_table, title=model.full_name, directory=model.path)

    logger.info('DONE')
    return result_table
Example #9
0
def explore_links():
    generator = Generator(SEED)

    config = Config()
    N_SAMPLES = 30_000
    feature_names = list(generator.feature_names) + ['Label', 'classifier', 'bin', 'log_p']
    mu_range = np.linspace(min(config.RANGE.mu), max(config.RANGE.mu), num=18)
    all_params = {"min": config.MIN, "true":config.TRUE, "max":config.MAX}
    # all_params = {"true":config.TRUE}

    clf = load_some_clf()
    all_average_df = {}
    for params_name, orig_params in all_params.items():
        print(f"computing link between X and mu using {params_name}...")
        average_list = []
        target_list = []
        for mu in mu_range:
            params = Parameter(*orig_params.nuisance_parameters, mu)
            data, label, weight = generator.generate(*params, n_samples=N_SAMPLES)
            sum_weight = np.sum(weight)
            average_array = np.sum(data*weight.reshape(-1, 1), axis=0) / sum_weight
            average_label = np.sum(label*weight, axis=0) / sum_weight
            proba = clf.predict_proba(data)
            decision = proba[:, 1]
            log_p = np.log(decision / (1 - decision))
            average_log_p = np.sum(log_p*weight, axis=0) / sum_weight
            average_clf = np.sum(decision*weight, axis=0) / sum_weight
            average_bin = np.sum((decision > 0.9)*weight, axis=0) / sum_weight
            average_array = np.hstack([average_array, average_label, average_clf, average_bin, average_log_p])
            average_list.append(average_array)
            target_list.append(mu)
        average_df = pd.DataFrame(np.array(average_list), columns=feature_names)
        all_average_df[params_name] = average_df

    for name in feature_names:
        for params_name, average_df in all_average_df.items(): 
            plt.scatter(average_df[name], target_list, label=params_name)
        plt.title(f'Link between weighted mean({name}) and mu')
        plt.ylabel('mu')
        plt.xlabel(f'weighted mean({name})')
        plt.legend()
        plt.savefig(os.path.join(DIRECTORY, f'link_{name}.png'))
        plt.clf()
Example #10
0
def run_iter(i_cv, i_iter, config, seed, directory):
    # Init
    logger = logging.getLogger()
    print_line()
    logger.info('running iter n°{}'.format(i_iter))
    directory = os.path.join(directory, f'iter_{i_iter}')
    os.makedirs(directory, exist_ok=True)
    results = dict(i_cv=i_cv, i=i_iter)

    # Config
    # DATA_N_SAMPLES = config.N_TESTING_SAMPLES
    DATA_N_SAMPLES = 9000

    R_MIN = config.TRUE.r - 0.3
    R_MAX = config.TRUE.r + 0.3
    LAM_MIN = config.TRUE.lam - 1
    LAM_MAX = config.TRUE.lam + 1
    MU_MIN = max(0, config.TRUE.mu - 0.1)
    MU_MAX = min(1.0, config.TRUE.mu + 0.1)

    R_N_SAMPLES = 21
    LAM_N_SAMPLES = 22
    MU_N_SAMPLES = 23

    # Prior
    prior_r = stats.uniform(loc=R_MIN, scale=R_MAX - R_MIN)
    prior_lam = stats.uniform(loc=LAM_MIN, scale=LAM_MAX - LAM_MIN)
    prior_mu = stats.uniform(loc=MU_MIN, scale=MU_MAX - MU_MIN)

    # Param grid
    r_grid = np.linspace(R_MIN, R_MAX, R_N_SAMPLES)
    lam_grid = np.linspace(LAM_MIN, LAM_MAX, LAM_N_SAMPLES)
    mu_grid = np.linspace(MU_MIN, MU_MAX, MU_N_SAMPLES)

    # Data Generator
    generator = Generator(seed)
    data, label = generator.sample_event(*config.TRUE, size=DATA_N_SAMPLES)
    debug_label(label)

    # Compute likelihood
    shape = (R_N_SAMPLES, LAM_N_SAMPLES, MU_N_SAMPLES)
    n_elements = np.prod(shape)
    logger.info(f"3D grid has {n_elements} elements")
    log_likelihood = np.zeros(shape)
    log_prior_proba = np.zeros(shape)
    for i, j, k in get_iter_prod(R_N_SAMPLES,
                                 LAM_N_SAMPLES,
                                 MU_N_SAMPLES,
                                 progress_bar=True):
        log_likelihood[i, j, k] = generator.log_proba_density(
            data, r_grid[i], lam_grid[j], mu_grid[k]).sum()
        log_prior_proba[i, j, k] = prior_r.logpdf(r_grid[i]) \
                                    + prior_lam.logpdf(lam_grid[j]) \
                                    + prior_mu.logpdf(mu_grid[k])
    debug_log_proba(log_likelihood, log_prior_proba)

    # Normalization
    posterior_r_lam_mu = softmax(log_likelihood + log_prior_proba)
    debug_posterior(posterior_r_lam_mu)

    # Marginal posterior param proba
    marginal_r = posterior_r_lam_mu.sum(axis=2).sum(axis=1)
    marginal_lam = posterior_r_lam_mu.sum(axis=2).sum(axis=0)
    marginal_mu = posterior_r_lam_mu.sum(axis=1).sum(axis=0)
    marginal_r_lam = posterior_r_lam_mu.sum(axis=2)
    assert marginal_r.shape == r_grid.shape, "sum along the wrong axis for marginal r"
    assert marginal_lam.shape == lam_grid.shape, "sum along the wrong axis for marginal lam"
    assert marginal_mu.shape == mu_grid.shape, "sum along the wrong axis for marginal mu"
    assert marginal_r_lam.shape == (
        R_N_SAMPLES,
        LAM_N_SAMPLES), "sum along the wrong axis for marginal (r, lam)"
    debug_marginal(marginal_r, "r")
    debug_marginal(marginal_lam, "lam")
    debug_marginal(marginal_mu, "mu")
    debug_marginal(marginal_r_lam, "r_lam")

    # Conditional posterior
    posterior_mu = np.divide(posterior_r_lam_mu,
                             marginal_r_lam.reshape(R_N_SAMPLES, LAM_N_SAMPLES,
                                                    1),
                             out=np.zeros_like(posterior_r_lam_mu),
                             where=(posterior_r_lam_mu != 0))

    # Minor check
    logger.debug("probability densities should sum to one")
    debug_proba_sum_one(posterior_mu *
                        marginal_r_lam.reshape(R_N_SAMPLES, LAM_N_SAMPLES, 1))
    debug_proba_sum_one(posterior_r_lam_mu)
    debug_proba_sum_one(marginal_r)
    debug_proba_sum_one(marginal_mu)

    # Compute estimator values
    sig_ratio = np.sum(label == 1) / DATA_N_SAMPLES
    expect_mu = expectancy(mu_grid, marginal_mu)
    var_mu = variance(mu_grid, marginal_mu)
    std_mu = np.sqrt(var_mu)
    expect_r = expectancy(r_grid, marginal_r)
    var_r = variance(r_grid, marginal_r)
    std_r = np.sqrt(var_r)
    expect_lam = expectancy(lam_grid, marginal_lam)
    var_lam = variance(lam_grid, marginal_lam)
    std_lam = np.sqrt(var_lam)

    stat_err = stat_uncertainty(mu_grid,
                                posterior_mu,
                                marginal_r_lam,
                                reshape=(1, 1, -1))
    syst_err = syst_uncertainty(mu_grid,
                                posterior_mu,
                                marginal_r_lam,
                                reshape=(1, 1, -1))

    i_max, j_max, k_max = np.unravel_index(np.argmax(log_likelihood),
                                           log_likelihood.shape)
    assert np.max(log_likelihood) == log_likelihood[
        i_max, j_max, k_max], "max and argmax should point to the same value"

    # Save estimator values
    results['mu'] = expect_mu
    results['mu' + _TRUTH] = config.TRUE.mu
    results['mu_std'] = std_mu
    results['mu' + _ERROR] = var_mu
    results['mu_stat'] = stat_err
    results['mu_syst'] = syst_err
    results['r'] = expect_r
    results['r' + _TRUTH] = config.TRUE.r
    results['r_std'] = std_r
    results['r' + _ERROR] = var_r
    results['lam'] = expect_lam
    results['lam' + _TRUTH] = config.TRUE.lam
    results['lam_std'] = std_lam
    results['lam' + _ERROR] = var_lam

    # Log estimator values
    logger.info(f"True mu value    = {config.TRUE.mu}")
    logger.info(f"Sig ratio        = {sig_ratio}")
    logger.info(f"E[mu|x]          = {expect_mu}")
    logger.info(f"Var[mu|x]        = {var_mu}")
    logger.info(f"sqrt(Var[mu|x])  = {std_mu}")
    logger.info(f"stat_uncertainty = {stat_err}")
    logger.info(f"syst_uncertainty = {syst_err}")
    logger.info(f"Var - stat       = {var_mu - stat_err}")
    logger.info(f"argmax_mu p(mu|x) = {mu_grid[np.argmax(marginal_mu)]}")
    logger.info(
        f"argmax_r_mu logp(x|r, mu) = {r_grid[i_max]} {mu_grid[j_max]}")

    # Minor checks
    debug_min_max(marginal_mu, 'p(mu | x)')
    debug_min_max(marginal_lam, 'p(lam | x)')
    debug_min_max(marginal_r, 'p(r | x)')
    debug_min_max(posterior_mu, 'p(mu | x, r)')
    debug_min_max(posterior_r_lam_mu, 'p(mu, r | x)')

    # Plots
    plot_infer(mu_grid,
               marginal_mu,
               expected_value=expect_mu,
               true_value=config.TRUE.mu,
               std=std_mu,
               name='mu',
               directory=directory,
               fname='marginal_mu.png')

    plot_infer(r_grid,
               marginal_r,
               expected_value=expect_r,
               true_value=config.TRUE.r,
               std=std_r,
               name='r',
               directory=directory,
               fname='marginal_r.png')

    plot_infer(lam_grid,
               marginal_lam,
               expected_value=expect_lam,
               true_value=config.TRUE.lam,
               std=std_lam,
               name='lam',
               directory=directory,
               fname='marginal_lam.png')

    # plot_distrib(data, generator, config.TRUE, expect_r, expect_mu,
    #             title="data distribution", directory=directory, fname='data_distrib.png')

    return results
Example #11
0
def features():
    config = Config()
    N_SAMPLES = 10_000
    R_MIN   = -0.3
    R_MAX   = 0.3 
    LAM_MIN = 2
    LAM_MAX = 4
    MU_MIN  = 0.0
    MU_MAX  = 1.0 

    generator = Generator(SEED)
    X, label = generator.sample_event(config.TRUE.r, config.TRUE.lam, config.TRUE.mu, size=N_SAMPLES)
    n_sig = np.sum(label==1)
    n_bkg = np.sum(label==0)
    print(f"nb of signal      = {n_sig}")
    print(f"nb of backgrounds = {n_bkg}")


    df = pd.DataFrame(X, columns=["x1","x2","x3"])
    df['label'] = label
    g = sns.PairGrid(df, vars=["x1","x2","x3"], hue='label')
    g = g.map_upper(sns.scatterplot)
    g = g.map_diag(sns.kdeplot)
    g = g.map_lower(sns.kdeplot, n_levels=6)
    g = g.add_legend()
    # g = g.map_offdiag(sns.kdeplot, n_levels=6)
    g.savefig(os.path.join(DIRECTORY, 'pairgrid.png'))
    plt.clf()


    nll = generator.nll(X, config.TRUE.r, config.TRUE.lam, config.TRUE.mu)
    print(f"NLL = {nll}")

    R_RANGE = np.linspace(R_MIN, R_MAX, 100)
    nll = [generator.nll(X, r, config.TRUE.lam, config.TRUE.mu) for r in R_RANGE]
    min_nll = R_RANGE[np.argmin(nll)]
    plt.plot(R_RANGE, nll, label="nll(r)")
    plt.axvline(config.TRUE.r, c="orange", label="true r")
    plt.axvline(min_nll, c="red", label="min nll")
    plt.xlabel("r")
    plt.ylabel("NLL")
    plt.title("NLL according to r param")
    plt.legend()
    plt.tight_layout()
    plt.savefig(os.path.join(DIRECTORY, 'NLL_r.png'))
    plt.clf()


    LAM_RANGE = np.linspace(LAM_MIN, LAM_MAX, 100)
    nll = [generator.nll(X, config.TRUE.r, lam, config.TRUE.mu) for lam in LAM_RANGE]
    min_nll = LAM_RANGE[np.argmin(nll)]
    plt.plot(LAM_RANGE, nll, label="nll(lam)")
    plt.axvline(config.TRUE.lam, c="orange", label="true lam")
    plt.axvline(min_nll, c="red", label="min nll")
    plt.xlabel("$\lambda$")
    plt.ylabel("NLL")
    plt.title("NLL according to $\lambda$ param")
    plt.legend()
    plt.tight_layout()
    plt.savefig(os.path.join(DIRECTORY, 'NLL_lambda.png'))
    plt.clf()

    MU_RANGE = np.linspace(MU_MIN, MU_MAX, 100)
    nll = [generator.nll(X, config.TRUE.r, config.TRUE.lam, mu) for mu in MU_RANGE]
    min_nll = MU_RANGE[np.argmin(nll)]
    plt.plot(MU_RANGE, nll, label="nll(mu)")
    plt.axvline(config.TRUE.mu, c="orange", label="true mu")
    plt.axvline(min_nll, c="red", label="min nll")
    plt.xlabel("$\mu$")
    plt.ylabel("NLL")
    plt.title("NLL according to $\mu$ param")
    plt.legend()
    plt.tight_layout()
    plt.savefig(os.path.join(DIRECTORY, 'NLL_mu.png'))
    plt.clf()