Example #1
0
def init_pop(dim, pop_size):
    qNom = np.zeros(dim)
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    pop = pg.population(prob=optimizeRes(dim, out=outputFile))
    pop.push_back(x=qNom, f=np.zeros(p_optimizeRes.get_nobj()))  #[0:dim])
    print(pop)
    print(pop.problem.get_fevals())
    pop.set_x(0, qNom)
    print(pop)
    for i in range(pop_size - 1):
        pop.push_back(pop.random_decision_vector())
    return pop
Example #2
0
def main(pop_init=None):

    # start timer
    startTime = timeit.default_timer()

    # initialize algorithm with hyperparameters
    alg = pg.moead(gen=generations, neighbours=neighbors, seed=seed)

    # there should be a way to run batch_fitness evaluations, haven't gotten it to work on NSCL
    #b = pg.bfe()
    #alg.set_bfe(b)
    #alg.set_verbosity(1)

    # initialize problem
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim, outputFile))

    # relic from old evolutions, which launched all islands internally
    #   this can allow for interconnectivity between islands
    #   now each run of this script calls its own island
    n_islands = 1
    # if more than one island and want to exchange info need to define a topology to connect them
    #top = pg.topology(pg.fully_connected(n_islands,1.0))

    # when running 5 objectives, pop needed to be 70
    pop_n = 70  #84
    if p_optimizeRes.get_nobj() == 4:
        # with 4 objs need pop=84
        pop_n = 84

    # check if we are using an input population or need to initialize one
    pop_new = None
    if (pop_init == None):
        # randomly create a new population of size pop_n
        pop_new = pg.population(p_optimizeRes, size=pop_n)
        print("initialize pop")
    else:
        pop_new = pop_init
        print("provided pop")

    # create archipelago from algorithm (of a single island)
    archi = pg.algorithm(alg)
    # evolve archipelago
    archi.evolve(pop_new)

    # check total time
    print('Running time (sec): %f' % (timeit.default_timer() - startTime))

    # when I tried to use multiprocessing I needed this
    #pg.mp_island.shutdown_pool()
    #pg.mp_bfe.shutdown_pool()

    return pop_new
Example #3
0
def read_pop_df(filename, pop=None):
    df = pd.read_hdf(filename)
    max_val = 1e9
    df = df.loc[(df['FP2_res'] < max_val) & (df['FP3_res'] < max_val) &
                (df['MaxBeamWidth'] < max_val) &
                (df['FP4_BeamSpot'] < max_val)]
    df = df.reindex()
    magnet_dim = len(df.columns) - optimized_params
    #    df = df.loc[(df['FP2_res'] < 1.0) & (df['FP2_e_xangle'] < 1.0) & (df['FP3_res'] < 1.0) & (df['FP3_e_xangle'] <1.0)]
    #    costs = df[['FP2_res','FP2_e_xangle','FP3_res','FP3_e_xangle']]
    #    costs = np.array(costs)
    #    pareto = is_pareto_efficient_simple(costs)
    #    df['pareto'] = pareto
    #    print(np.count_nonzero(pareto) )
    #    df = (df.loc[(df['pareto']==True)])
    #    df = df.sort_values(by='FP2_res',ignore_index=True)
    #    df["f0"] = df['f0'] * 1.0 / 4.419411469795324
    #    df['f1'] = df['f1'] * 1.0 / 2.7701491204695756
    #    print(magnet_dim)
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    if pop == None:
        pop = pg.population(p_optimizeRes)
#    df_2 = df.loc[(df["f0"] < 10) & (df["f1"] < 10) & (df["f2"] < 10) & (df["f3"] < 10)]
#    df = df_2
    nrow, ncol = df.shape
    #    print(df.index)
    for i in df.index:
        if i > 26000:
            break
#        print(i)
        append = True
        xs = []
        for j in range(1, magnet_dim + 1):
            xs.append(df["q" + str(j)][i])
        xs = np.asarray(xs)
        fs = []
        for j in range(magnet_dim, ncol + 0):
            #            if j > 0:
            #                fs.append(df["f"+str(j)][i]/fNom[j])
            #            else:
            #            if df["f"+str(j)][i] >= 1.0:
            #                append=False
            #            if df["f"+str(j)][i] < 0 or np.isnan(df["f"+str(j)][i]):
            #                print(df["f"+str(j)][i], i)
            fs.append(df.iloc[i, j])
        if append:
            pop.push_back(xs, f=fs)


#    print(pop)
    return pop
Example #4
0
def read_pop(filename, pop=None):
    df = pd.read_csv(filename,
                     names=[
                         "x0", "x1", "x2", "x3", "x4", "x5", "x6", "f0", "f1",
                         "f2", "f3"
                     ])
    magnet_dim = len(df.columns) - optimized_params
    quads = []
    for i in range(magnet_dim):
        quads.append("x{}".format(i))
    columns = quads
    columns.append("f0")
    columns.append("f1")
    columns.append("f2")
    columns.append("f3")

    #    df["f0"] = df['f0'] * 1.0 / 4.419411469795324
    #    df['f1'] = df['f1'] * 1.0 / 2.7701491204695756
    #    print(magnet_dim)
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    if pop == None:
        pop = pg.population(p_optimizeRes)
#    df_2 = df.loc[(df["f0"] < 10) & (df["f1"] < 10) & (df["f2"] < 10) & (df["f3"] < 10)]
#    df = df_2
    nrow, ncol = df.shape
    #    print(df)
    for i in df.index:
        append = True
        xs = []
        for j in range(magnet_dim):
            xs.append(df["x" + str(j)][i])
        xs = np.asarray(xs)
        fs = []
        for j in range(ncol - magnet_dim):
            #            if j > 0:
            #                fs.append(df["f"+str(j)][i]/fNom[j])
            #            else:
            #            if df["f"+str(j)][i] >= 1.0:
            #                append=False
            if df["f" + str(j)][i] < 0 or np.isnan(df["f" + str(j)][i]):
                print(df["f" + str(j)][i], i)
            fs.append(df["f" + str(j)][i])
        if append:
            pop.push_back(xs, f=fs)


#    print(pop)
    return pop
Example #5
0
def read_pop(filename):
    df = pd.read_csv(filename)
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim, out=outputFile))
    pop = pg.population(p_optimizeRes)
    nrow, ncol = df.shape
    print(df)
    for i in range(nrow):
        xs = []
        for j in range(magnet_dim):
            xs.append(df["x" + str(j)][i])
        xs = np.asarray(xs)
        fs = []
        for j in range(ncol - magnet_dim):
            fs.append(df["f" + str(j)][i])
        pop.push_back(xs, f=fs)
    return pop
Example #6
0
def read_pop(filename, pop=None):
    #    df = pd.read_csv(filename,names=["x0","x1","x2","x3","x4","x5","x6","f0","f1","f2","f3"])
    magnet_dim = len(pd.read_csv(filename).columns) - optimized_params
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    obj_dim = p_optimizeRes.get_nobj()
    quads = []
    for i in range(magnet_dim):
        quads.append("x{}".format(i))
    columns = quads
    for i in range(obj_dim):
        columns.append("f{}".format(i))
    df = pd.read_csv(filename, names=columns)
    #    df["f0"] = df['f0'] * 1.0 / 4.419411469795324
    #    df['f1'] = df['f1'] * 1.0 / 2.7701491204695756
    #    print(magnet_dim)
    if pop == None:
        pop = pg.population(p_optimizeRes)
#    df_2 = df.loc[(df["f0"] < 10) & (df["f1"] < 10) & (df["f2"] < 10) & (df["f3"] < 10)]
#    df = df_2
    nrow, ncol = df.shape
    #    print(df)
    for i in df.index:
        #        if i in [0,102,76]:
        #            continue
        #    for i in range(nrow):
        xs = []
        for j in range(magnet_dim):
            xs.append(df["x" + str(j)][i])
        xs = np.asarray(xs)
        fs = []
        #        print(ncol, magnet_dim)
        for j in range(ncol - magnet_dim):
            #            if j > 0:
            #                fs.append(df["f"+str(j)][i]/fNom[j])
            #            else:
            if df["f" + str(j)][i] < 0 or np.isnan(df["f" + str(j)][i]):
                print(df["f" + str(j)][i], i)
                df["f" + str(j)][i] = 1e10
            fs.append(df["f" + str(j)][i])
        if np.all(np.array(fs) < 1) == True or True:
            pop.push_back(xs, f=fs)


#    print(pop)
    return pop
Example #7
0
def read_pop_df(filename, pop=None):
    df = pd.read_hdf(filename)
    magnet_dim = 15
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    nobj = p_optimizeRes.get_nobj()
    if pop == None:
        pop = pg.population(p_optimizeRes)
    nrow, ncol = df.shape
    for i in df.index:
        append=True
        xs = []
        for j in range(1,magnet_dim+1):
            xs.append(df["q"+str(j)][i]) 
        xs = np.asarray(xs)
        fs = []
        for j in range(magnet_dim,magnet_dim+nobj):
#            if i == 0:
#                print(df.iloc[i,magnet_dim:magnet_dim+p_optimizeRes.get_nobj()])
            fs.append(df.iloc[i,j])
        if append:
            pop.push_back(xs,f=fs)
    return pop, df
Example #8
0
def read_pop(filename,pop=None):
    # get magnet dimensions 
    magnet_dim = len(pd.read_csv(filename).columns)-optimized_params
    # init problem for creating pop
    p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
    obj_dim = p_optimizeRes.get_nobj()
    quads = []
    # construct columns to read from csv
    for i in range(magnet_dim):
        quads.append("x{}".format(i))
    columns = quads
    for i in range(obj_dim):
        columns.append("f{}".format(i))
    # read df from csv
    df = pd.read_csv(filename,names=columns)
    # initialize pop if none
    if pop == None:
        pop = pg.population(p_optimizeRes)

    # construct pop from df 
    nrow, ncol = df.shape
    for i in df.index:
        xs = []
        for j in range(magnet_dim):
            xs.append(df["x"+str(j)][i]) 
        xs = np.asarray(xs)
        fs = []
        for j in range(ncol-magnet_dim):
            # if not a valid obj value throw out point
            if df["f"+str(j)][i] < 0 or np.isnan(df["f"+str(j)][i]):
                print("error: ", df["f"+str(j)][i], i)
                df["f"+str(j)][i] = 1e10
            fs.append(df["f"+str(j)][i])
        # add point to population
        pop.push_back(xs,f=fs)
    # return population to main()
    return pop    
Example #9
0
def plot_4d(popi,filename,df):

    pop = None
    for i_cluster in range(10):
        df_i = df.loc[(df['kcluster'] == i_cluster)]
        magnet_dim = 15
        p_optimizeRes = pg.problem(optimizeRes(magnet_dim))
        nobj = p_optimizeRes.get_nobj()
        if pop == None:
            pop = pg.population(p_optimizeRes)
        nrow, ncol = df_i.shape
        for i in df_i.index:
            append=True
            xs = []
            for j in range(1,magnet_dim+1):
                xs.append(df_i["q"+str(j)][i]) 
            xs = np.asarray(xs)
            fs = []
            for j in range(magnet_dim,magnet_dim+nobj):
#                if i == 0:
#                    print(df.iloc[i,magnet_dim:magnet_dim+p_optimizeRes.get_nobj()])
                fs.append(df.iloc[i,j])
            if append:
                pop.push_back(xs,f=fs)

        popi = pop
        sort_param = 3
        good_results=0
        magnet_dim = len(popi.get_x()[0])
        hv = pg.hypervolume(popi)
        ref_point = np.zeros(optimized_params)+1e10 
        ndf, dl, dc, ndl = pg.fast_non_dominated_sorting(popi.get_f())
        plot_x, plot_y = 0,0
        fig, axs = plt.subplots(optimized_params-1,sharex=True)
        fig.suptitle('Pareto Fronts of each parameter vs. BeamSpotSize at FP4')
        axs[optimized_params-2].set_xlabel(fNames[sort_param])
        reduced_ndf = []
        first = True
#        df_closest = df.loc[(df['kcluster'] == i_cluster)]
        for j in range(0,optimized_params-1):
            ndf_champ = []
            axs[plot_y].axvline(x=fNom[0],linestyle="dashed",color="red")
            axs[plot_y].axhline(y=1.0,linestyle="dashed",color="red")
            for i in ndf[0]:
                check_val=1e9
                if np.all(np.array(popi.get_f()[i]) < check_val) == True:
                    good_results+=1
    #                print(filename[-6:-4], good_results, popi.get_f()[i])
                    ndf_champ.append(popi.get_f()[i])
                    reduced_ndf.append(i)
            try:
                pg.plot_non_dominated_fronts(ndf_champ,comp=[sort_param,j],axes=axs[plot_y])
    #            if j == 1:
    #                print(filename[-6:-4], len(ndf_champ))
            except:
                print(filename[-6:-4], "no better than nominal solutions")
                return
            if "closest" in df_i.columns:
                df_closest = df_i.loc[df['closest']==True]
                df_closest = df_closest.reset_index(drop=True)
    #            print(df_closest.iloc[:,15:19])
                for i_closest in df_closest.index:
                    axs[plot_y].text(df_closest.iloc[:,18][i_closest],df_closest.iloc[:,15+j][i_closest],str(df_closest['kcluster'][0]+1),color='red')
            axs[plot_y].set_ylabel(fNames[j])
            axs[plot_y].set_yscale('log')
            axs[plot_y].set_xscale('log')
            plot_y += 1
    
        fig.tight_layout()
        fig.savefig(filename+"{}_paretos.png".format(i_cluster))
        plt.cla()
        fig2, axs2 = plt.subplots(4,4)
        plot_x, plot_y = 0,0
        reduced_qs = np.array(popi.get_x())[reduced_ndf]
        ycolumns = []
        for i in range(magnet_dim):
            ycolumns.append('y{}'.format(i))
        df_i = pd.DataFrame(reduced_qs, columns = ycolumns)
        qNom = np.zeros(magnet_dim)
        for i in range(magnet_dim):
            if plot_x > 3:
                plot_x, plot_y = 0, plot_y+1 
            axs2[plot_y,plot_x] = df_i['y{0}'.format(i)].plot.hist(ax=axs2[plot_y,plot_x],bins=100,range=(-2,2))
    #        axs2[plot_y,plot_x].axvline( x = qNom[i], ymin=0,ymax=20,color='red',linestyle='dashed')
    #        axs[plot_y,plot_x].axvline( x = max_y[i], ymin=0,ymax=20,color='green',linestyle='dashed')
            axs2[plot_y,plot_x].axes.yaxis.set_visible(False)
    #        axs2[plot_y,plot_x].axes.set_yscale("log")
    #        axs2[plot_y,plot_x].axes.set_ylim(0.1,20)
            xlower, xupper = popi.problem.get_bounds()
            xlower, xupper = np.min(xlower), np.max(xupper)
            axs2[plot_y,plot_x].axes.set_xlim(xlower,xupper)
            axs2[plot_y,plot_x].set_title("q{0}".format(i+1))
            y_min, y_max = axs2[plot_y,plot_x].get_ylim()
            df_closest['yplot'] = pd.Series(df_closest['kcluster'][0]).apply(lambda x: x/(10)*(y_max-y_min)+y_min)
    #        print(df_closest.iloc[:,:15])
    #        if "closest" in df.columns:
            for i_closest in df_closest.index:
                axs2[plot_y,plot_x].text(df_closest["q{0}".format(i+1)][i_closest],df_closest['yplot'][i_closest],str(df_closest['kcluster'][0]+1),color='red')
            
            plot_x += 1
        
        fig2.delaxes(axs2[plot_y,plot_x])
        fig2.tight_layout()
        plt.savefig(filename + "{}_magnet_hists.png".format(i_cluster))
    return