def run_tests(): import problem_unittests as t t.test_decoding_layer(decoding_layer) t.test_decoding_layer_infer(decoding_layer_infer) t.test_decoding_layer_train(decoding_layer_train) t.test_encoding_layer(encoding_layer) t.test_model_inputs(model_inputs) t.test_process_encoding_input(process_decoder_input) t.test_sentence_to_seq(sentence_to_seq) t.test_seq2seq_model(seq2seq_model) t.test_text_to_ids(text_to_ids)
def run_all_tests(): tests.test_text_to_ids(text_to_ids) check_tensorflow_gpu() tests.test_model_inputs(model_inputs) tests.test_process_encoding_input(process_decoder_input) from imp import reload reload(tests) tests.test_encoding_layer(encoding_layer) tests.test_decoding_layer_train(decoding_layer_train) tests.test_decoding_layer_infer(decoding_layer_infer) tests.test_decoding_layer(decoding_layer) tests.test_seq2seq_model(seq2seq_model) tests.test_sentence_to_seq(sentence_to_seq)
keep_prob) with tf.variable_scope("decoding", reuse=True) as decoding_scope: start_of_sequence_id = target_vocab_to_int['<GO>'] end_of_sequence_id = target_vocab_to_int['<EOS>'] inference_logits = decoding_layer_infer( encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, sequence_length - 1, vocab_size, decoding_scope, output_fn, keep_prob) return train_logits, inference_logits """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_decoding_layer(decoding_layer) # ### 构建神经网络 # # 应用你在上方实现的函数,以: # # - 向编码器的输入数据应用嵌入。 # - 使用 `encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob)` 编码输入。 # - 使用 `process_decoding_input(target_data, target_vocab_to_int, batch_size)` 函数处理目标数据。 # - 向解码器的目标数据应用嵌入。 # - 使用 `decoding_layer(dec_embed_input, dec_embeddings, encoder_state, vocab_size, sequence_length, rnn_size, num_layers, target_vocab_to_int, keep_prob)` 解码编码的输入数据。 # In[13]: def seq2seq_model(input_data, target_data, keep_prob, batch_size,