def testShape(self): num_dims = 3 problem_defs = [{ "name": "simple", "options": {} } for _ in xrange(num_dims)] ensemble = problems.ensemble(problem_defs) f = ensemble() self.assertEqual(f.get_shape().as_list(), [])
def testVariables(self): num_dims = 3 problem_defs = [{"name": "simple", "options": {}} for _ in xrange(num_dims)] ensemble = problems.ensemble(problem_defs) ensemble() variables = tf.trainable_variables() self.assertEqual(len(variables), num_dims) for v in variables: self.assertEqual(v.get_shape().as_list(), [])
def testValues(self, value): num_dims = 1 weight = 0.5 problem_defs = [{"name": "simple", "options": {}} for _ in xrange(num_dims)] ensemble = problems.ensemble(problem_defs, weights=[weight]) f = ensemble() with self.test_session() as sess: output = sess.run(f, feed_dict={"problem_0/x:0": value}) self.assertEqual(output, weight * value**2)