def find_all_prob(): ps = "" with open("prolog/problog_predicates.pl", "r") as f: for line in f: ps += line # Calcolo probabilità tramite problog ps += "query(infect(_))." p = PrologString(ps) dbp = engine.prepare(p) lf = LogicFormula.create_from(p) # ground the program dag = LogicDAG.create_from(lf) # break cycles in the ground program cnf = CNF.create_from(dag) # convert to CNF ddnnf = DDNNF.create_from(cnf) # compile CNF to ddnnf r = ddnnf.evaluate() # Siccome Problog restituisce un dizionario struttrato in questa maniera: # {query(infect(2)): 0.67, query(infect(3)): 0.8, ...} # Bisogna estrarre ogni id dalla chiave nel seguente modo items = [] if len(RedNode.query.all()) > 0: for key, value in r.items(): start = "infect(" end = ")" result = str(key)[len(start):-len(end)] try: u = User.query.get(int(result)) items.append((u, value)) except ValueError: continue return items
def evaluate_using_problog_library(program, print_steps=False): """ Evaluates a problog program using the problog library. """ formula = ground_problog_program(program) if print_steps: print("GROUND PROGRAM:") print(formula.to_prolog()) print(separator_1) cnf = CNF.create_from(formula) # type: CNF if print_steps: print("DIMACS:") print(cnf.to_dimacs(weighted=True, names=True)) print(separator_1) ddnnf = DDNNF.create_from(cnf) results = ddnnf.evaluate() results = sorted(results.items(), key=lambda kv: str(kv[0])) results = [(str(q), p) for q, p in results] if print_steps: print("EVALUATION:") query_str_len = max([len(q) for q, _ in results]) for query, probability in results: print("{:<{}}: {}".format(query, query_str_len, probability)) return results
def find_user_prob(uid): ps = "" with open("prolog/problog_predicates.pl", "r") as f: for line in f: ps += line # Pulizia dei nodi dinamici date/1 all'interno di problog p = PrologString(ps) dbp = engine.prepare(p) query = Term("clean") res = engine.query(dbp, query) # Calcolo probabilità tramite problog ps += "query(infect(" + str(uid) + "))." p = PrologString(ps) dbp = engine.prepare(p) lf = LogicFormula.create_from(p) # ground the program dag = LogicDAG.create_from(lf) # break cycles in the ground program cnf = CNF.create_from(dag) # convert to CNF ddnnf = DDNNF.create_from(cnf) # compile CNF to ddnnf r = ddnnf.evaluate() # Salvataggio nel database SQLite della data del nodo rosso più vecchio con cui è stato a contatto term = Term("date", None) database = problog_export.database # Database interno di Problog dove vengono salvati i fatti con assertz() node_key = database.find(term) if node_key is not None: node = database.get_node(node_key) dates = node.children.find( term.args) # Tutti i fatti date/1 inseriti con assertz/1 vals = [] if dates: for date in dates: n = database.get_node(date) vals.append(int(n.args[0])) min_val = min(vals) # Trova la data (in millisecondi) minima u = User.query.get(uid) u.oldest_risk_date = min_val db.session.commit() return r
def main(): p = PrologString(""" increaseOsteoblasts :- calcium. 0.5::\+increaseOsteoblasts :- calcium, bispho. reduceOsteoclasts :- bispho. 1.0::\+reduceOsteoclasts :- calcium , bispho. osteoprosis :- initialOsteoprosis. 0.85::\+osteoprosis :- reduceOsteoclasts. % Bisphosphonates 0.15::\+osteoprosis :- increaseOsteoblasts. % Calcium % Prior probabilities 0.5::calcium. 0.5::bispho. 0.5::initialOsteoprosis. % Query probability of effect evidence(initialOsteoprosis, true). evidence(calcium, true). evidence(bispho, false). query(osteoprosis). """) #1.3: Create the CNF of the problog lf = LogicFormula.create_from(p,avoid_name_clash=True, keep_order=True, label_all=True) # ground the program print("Ground program") print(LogicFormula.to_prolog(lf)) dag = LogicDAG.create_from(lf,avoid_name_clash=True, keep_order=True, label_all=True) # break cycles in the ground program cnf = CNF.create_from(dag) # convert to CNF print(CNF.to_dimacs(cnf)) ddnnf = DDNNF.create_from(cnf) # compile CNF to ddnnf test = DDNNF.get_weights(ddnnf) print(test) print(ddnnf.evaluate()) #3.1: Create 4 interpretations print("--Create 4 interpretations--") interpretations = create_interpretations(p_without_evidence, 4) for i in interpretations: print(i) #3.2: Create 100, 1000, 10000 interpretations and estimate p_n print("--Estimate parameters--") estimate_parameters(100) estimate_parameters(1000) estimate_parameters(10000)
evidence(friends(a,c), true). query(smokes(a)). """) lf2 = LogicFormula.create_from(p2, avoid_name_clash=True, keep_order=True, label_all=True) # print(LogicFormula.to_prolog(lf2)) dag2 = LogicDAG.create_from(lf2, avoid_name_clash=False, keep_order=True, label_all=True) # # print(dag2) # # print(LogicFormula.to_prolog(dag2)) cnf2 = CNF.create_from(dag2) # # print(cnf2.to_dimacs(weighted=True, invert_weights=True)) ddnnf2 = DDNNF.create_from(cnf2) #print(ddnnf2.evaluate()) # # import PyBool_public_interface as Bool # expr = Bool.parse_std("input.txt") # expr = expr["main_expr"] # expr = Bool.exp_cnf(expr) # expr = Bool.simplify(expr) # print(Bool.print_expr(expr)) # Bool.write_dimacs(Bool.cnf_list(expr), "/Users/Bruno/Desktop/dimacs.cnf") # p3 = PrologString(""" # 0.2::stress(a). # 0.2::stress(b).
start = timeit.default_timer() model = m.format(door_num=i) p = PrologString(model) formula = get_evaluatable().create_from(p) print(formula.evaluate()) stop = timeit.default_timer() times.append(stop - start) for i in door_num: model = m.format(door_num=i) p = PrologString(model) lf = LogicFormula.create_from(p) lfs.append(lf) dag = LogicDAG.create_from(lf) dags.append(dag) cnf = CNF.create_from(dag) cnfs.append(cnf) for i in door_num: model = m.format(door_num=i) p = PrologString(model) lf = LogicFormula.create_from(p) lfs.append(lf) dag = LogicDAG.create_from(lf) dags.append(dag) cnf = CNF.create_from(dag) cnfs.append(cnf) ddnnf = DDNNF.create_from(cnf) print(ddnnf.evaluate()) print(times)
from problog.program import PrologString from problog.formula import LogicFormula, LogicDAG from problog.logic import Term from problog.ddnnf_formula import DDNNF from problog.cnf_formula import CNF p = PrologString(""" coin(c1). coin(c2). 0.4::heads(C); 0.6::tails(C) :- coin(C). win :- heads(C). evidence(heads(c1), false). query(win). query(coin(X)). """) lf = LogicFormula.create_from(p) # ground the program dag = LogicDAG.create_from(lf) # break cycles in the ground program cnf = CNF.create_from(dag) # convert to CNF ddnnf = DDNNF.create_from(cnf) # compile CNF to ddnnf results = ddnnf.evaluate() print(results)