Example #1
0
def parse_background_knowledge_keys(
        file_name: Optional[str] = None,
        prediction_goal: Optional[Term] = None) -> BackgroundKnowledgeWrapper:
    if file_name is None:
        return BackgroundKnowledgeWrapper()

    logic_program = PrologFile(file_name)

    if prediction_goal is not None:
        prediction_goal_functor = prediction_goal.functor  # type: str

        found_a_prediction_goal_clause = False

        prediction_goal_clauses = SimpleProgram()
        stripped_logic_program = SimpleProgram()

        for prolog_statement in logic_program:
            if str(prolog_statement).startswith(prediction_goal_functor):
                found_a_prediction_goal_clause = True
                prediction_goal_clauses += prolog_statement
            else:
                stripped_logic_program += prolog_statement

        if found_a_prediction_goal_clause:
            return BackgroundKnowledgeWrapper(
                logic_program=stripped_logic_program,
                prediction_goal_clauses=prediction_goal_clauses)
        else:
            return BackgroundKnowledgeWrapper(logic_program=logic_program)
    else:
        return BackgroundKnowledgeWrapper(logic_program=logic_program)
Example #2
0
 def __init__(self,
              pos_examples,
              neg_examples,
              extra_terms=[],
              target_name='target'):
     # Define the language of terms
     self.target = Term(target_name)
     self.equal = Term('equal')
     self.pos_examples = pos_examples
     self.neg_examples = neg_examples
     self.examples = pos_examples + neg_examples
     self.extra_terms = extra_terms
     #TODO: check extra terms arity, if greater than target arity, create more variables
     n_target_variables = len(self.examples[0])
     target_variables_names = [
         'X' + str(i) for i in range(1, n_target_variables + 1)
     ]
     self.X = list(map(Var, target_variables_names))
     constants = set()
     for example in self.examples:
         constants.update(example)
     self.c = list(map(Term, [str(constant) for constant in constants]))
     # Initialize the logic program
     self.pl = SimpleProgram()
     self.pl += self.equal(self.X[0], self.X[0])
     self.pl += self.target(*tuple(self.X))
     for extra_term in self.extra_terms:
         self.pl += PrologString(extra_term)
     self.predicates = [self.equal]  # + list(extra_terms.keys())
     self.engine = DefaultEngine()
     self.db = self.engine.prepare(self.pl)
     self.original_rule = list(self.pl)[1]
     self.new_body_literals = []
     print(list(self.pl))
Example #3
0
def create_rules(xs, ys):
    X, Y, Z = map(Var, ["X", "Y", "Z"])
    sp = SimpleProgram()
    sp += xs["myself"](X, Y) << xs["myself"](X, Y)
    sp += xs["husband"](X, Y) << xs["wife"](Y, X)
    sp += xs["wife"](X, Y) << xs["husband"](Y, X)
    sp += xs["couple"](X, Y) << (xs["husband"](X, Y) | xs["wife"](X, Y))
    sp += xs["couple"](X, Y) << xs["couple"](Y, X)
    sp += xs["son"](X, Y) << (xs["son"](X, Y) |
                              (xs["couple"](X, Z) & xs["son"](Z, Y)))
    sp += xs["daughter"](X, Y) << (xs["daughter"](X, Y) |
                                   (xs["couple"](X, Z) & xs["daughter"](Z, Y)))
    sp += xs["child"](X, Y) << (xs["son"](X, Y) | xs["daughter"](X, Y))
    sp += xs["child"](X, Y) << (xs["father"](Y, X) | xs["mother"](Y, X))
    sp += xs["child"](X, Y) << (xs["couple"](X, Z) & xs["child"](Z, Y))
    sp += xs["parent"](X, Y) << xs["child"](Y, X)
    sp += xs["mother"](X, Y) << (xs["wife"](Z, Y) & xs["child"](Y, X))
    sp += xs["father"](X, Y) << (xs["husband"](Z, Y) & xs["child"](Y, X))
    sp += xs["sibling"](X, Y) << (xs["parent"](X, Z) & xs["parent"](Y, Z))
    sp += xs["grandfather"](X, Y) << (xs["father"](X, Z) & xs["father"](Z, Y))
    sp += xs["grandmother"](X, Y) << (xs["father"](X, Z) & xs["mother"](Z, Y))
    sp += xs["grandparents"](
        X, Y) << (xs["grandfather"](X, Y) | xs["grandmother"](X, Y))
    sp += xs["grandson"](X, Y) << (xs["son"](X, Z) & xs["son"](Z, Y))
    sp += xs["granddaughter"](X, Y) << (xs["son"](X, Z) & xs["daughter"](Z, Y))
    sp += xs["grandchildren"](X, Y) << (xs["son"](X, Z) & xs["child"](Z, Y))
    sp += xs["grandfather_"](X, Y) << (xs["mother"](X, Z) & xs["father"](Z, Y))
    sp += xs["grandmother_"](X, Y) << (xs["mother"](X, Z) & xs["mother"](Z, Y))
    sp += xs["grandparents_"](
        X, Y) << (xs["grandfather_"](X, Y) | xs["grandmother_"](X, Y))
    sp += xs["grandson_"](X, Y) << (xs["daughter"](X, Z) & xs["son"](Z, Y))
    sp += xs["granddaughter_"](
        X, Y) << (xs["daughter"](X, Z) & xs["daughter"](Z, Y))
    sp += xs["grandchildren_"](X,
                               Y) << (xs["daughter"](X, Z) & xs["child"](Z, Y))
    sp += xs["son-wife"](X, Y) << (xs["husband"](Y, Z) & xs["parent"](Z, X))
    sp += xs["daughter-husband"](X,
                                 Y) << (xs["wife"](Y, Z) & xs["parent"](Z, X))
    sp += xs["daughter-husband"](X,
                                 Y) << (xs["wife"](Y, Z) & xs["parent"](Z, X))
    sp += xs["husband-mother"](X,
                               Y) << (xs["husband"](X, Z) & xs["mother"](Z, Y))
    sp += xs["husband-father"](X,
                               Y) << (xs["husband"](X, Z) & xs["father"](Z, Y))
    sp += xs["wife-mother"](X, Y) << (xs["wife"](X, Z) & xs["mother"](Z, Y))
    sp += xs["wife-father"](X, Y) << (xs["wife"](X, Z) & xs["father"](Z, Y))

    sp += xs["wife"](ys["林爸爸"], ys["林媽媽"])  # 林媽媽 是 林爸爸 的 妻子
    sp += xs["son"](ys["林爸爸"], ys["林本人"])  # 林本人 是 林爸爸 的 兒子
    sp += xs["daughter"](ys["林媽媽"], ys["林妹妹"])  # 林妹妹 是 林媽媽 的 女兒
    sp += xs["husband"](ys["林太太"], ys["林本人"])  # 林本人 是 林太太 的 丈夫
    sp += xs["father"](ys["林囡囡"], ys["林本人"])  # 林本人 是 林囡囡 的 爸爸
    sp += xs["husband"](ys["林妹妹"], ys["男朋友"])  # 男朋友 是 林妹妹 的 丈夫
    sp += xs["mother"](ys["林太太"], ys["張媽媽"])  # 張媽媽 是 林太太 的 媽媽
    sp += xs["wife"](ys["張爸爸"], ys["張媽媽"])  # 張媽媽 是 張爸爸 的 妻子
    return sp
Example #4
0
    def __init__(self,
                 background_knowledge: Optional[LogicProgram] = None,
                 engine: GenericEngine = None):
        super().__init__(engine=engine)
        if background_knowledge is None:
            self.db = self.engine.prepare(SimpleProgram())  # type: ClauseDB
        else:
            self.db = self.engine.prepare(background_knowledge)  # type: ClauseDB

        self.db += Term('query')(self.to_query)
Example #5
0
def parse_background_knowledge_models(
    file_name: Optional[str] = None,
    possible_labels: Optional[Iterable[Term]] = None
) -> BackgroundKnowledgeWrapper:
    if file_name is None:
        return BackgroundKnowledgeWrapper()

    logic_program = PrologFile(file_name)

    if possible_labels is not None:
        possible_labels_str = [str(label)
                               for label in possible_labels]  # type: List[str]

        found_a_prediction_clause = False

        prediction_goal_clauses = SimpleProgram()
        stripped_logic_program = SimpleProgram()

        for prolog_statement in logic_program:
            is_prediction_clause = False
            for possible_label_str in possible_labels_str:
                if str(prolog_statement).startswith(possible_label_str):
                    is_prediction_clause = True
                    found_a_prediction_clause = True
                    break

            if is_prediction_clause:
                prediction_goal_clauses += prolog_statement
            else:
                stripped_logic_program += prolog_statement

        if found_a_prediction_clause:
            return BackgroundKnowledgeWrapper(
                logic_program=stripped_logic_program,
                prediction_goal_clauses=prediction_goal_clauses)
        else:
            return BackgroundKnowledgeWrapper(logic_program=logic_program)
    else:
        return BackgroundKnowledgeWrapper(logic_program=logic_program)
Example #6
0
    def add_literal_to_goal(self, literal):
        if len(self.new_body_literals) == 0:
            new_goal = self.original_rule << literal
        else:
            new_body = literal
            for l in self.new_body_literals:
                new_body = new_body & l
            new_goal = self.original_rule << new_body
        new_pl = SimpleProgram()

        new_pl += list(self.pl)[0]
        new_pl += new_goal
        new_db = self.engine.prepare(new_pl)
        return new_db, new_pl
Example #7
0
 def convert_tree_to_simple_program(
         self, tree_root: TreeNode,
         language: TypeModeLanguage) -> SimpleProgram:
     if self.debug_printing:
         print('\n=== START conversion of tree to program ===')
         print('tree to be converted:')
         print(str(tree_root))
     self.predicate_generator = get_predicate_generator(language)
     self.program = SimpleProgram()
     self._decision_tree_to_simple_program(tree_root)
     if self.debug_printing:
         print('resulting program:')
         for statement in self.program:
             print(statement)
         print('=== END conversion of tree to program ===\n')
     return self.program
    def parse(self, program=SimpleProgram()):
        cb = ClauseBuilder(self.__triple_mode)
        term_dict = dict()
        for row in self.__data:
            for triple in row:
                if term_dict.get(triple[1]) is None:
                    term_dict[triple[1]] = get_type(triple[1])
                if term_dict.get(triple[0]) is None:
                    term_dict[triple[0]] = get_type(triple[0])
                if term_dict.get(triple[2]) is None:
                    term_dict[triple[2]] = get_type(triple[2])
                pred = term_dict[triple[1]]
                subj = term_dict[triple[0]]
                obj = term_dict[triple[2]]
                program += cb.get_clause(subj, pred, obj)

        return program
Example #9
0
def convert_tree_to_simple_program(tree_root: TreeNode,
                                   language: TypeModeLanguage,
                                   debug_printing=False) -> SimpleProgram:
    if debug_printing:
        print('\n=== START conversion of tree to program ===')
        print('tree to be converted:')
        print(str(tree_root))
    predicate_generator = get_predicate_generator(language)
    program = SimpleProgram()
    decision_tree_to_simple_program(tree_root,
                                    program,
                                    predicate_generator,
                                    debug_printing=debug_printing)
    if debug_printing:
        print('resulting program:')
        for statement in program:
            print(str(statement) + ".")
        print('=== END conversion of tree to program ===\n')
    return program
Example #10
0
    def get_full_background_knowledge_simple_program(
            self) -> Optional[SimpleProgram]:
        if not self.has_background_knowledge():
            return None

        elif self.logic_program is not None and self.prediction_goals_clauses is not None:
            full_bg_kw = SimpleProgram()

            for lp_statement in self.logic_program:
                full_bg_kw += lp_statement

            for pgc_statement in self.prediction_goals_clauses:
                full_bg_kw += pgc_statement

            return full_bg_kw

        elif self.logic_program is not None:
            return self.logic_program
        else:
            return self.prediction_goals_clauses
from problog.program import SimpleProgram

from mai_version.probeersel.mach_tests.mach_definitions_logic import worn, replaceable, gear, engine, chain, control_unit, wheel


ex1, ex2, ex3, ex4, ex5, ex6, ex7, ex8, ex9, ex10 = SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram(), SimpleProgram()
ex1 += worn(gear)
ex1 += worn(engine)
ex1 += replaceable(gear)

ex3 += worn(gear)

ex4 += worn(engine)

ex5 += worn(gear)
ex5 += worn(chain)

ex6 += worn(wheel)

ex7 += worn(wheel)
ex7 += worn(control_unit)

ex9 += worn(wheel)
ex9 += worn(chain)

ex10 += worn(engine)
ex10 += worn(chain)

examples = [ex1, ex2, ex3, ex4, ex5, ex6, ex7, ex8, ex9, ex10]
Example #12
0
 def __init__(self, background_knowledge: Optional[LogicProgram]=None, engine:GenericEngine = None):
     super().__init__(engine=engine)
     if background_knowledge is None:
         self.db = self.engine.prepare(SimpleProgram())
     else:
         self.db = self.engine.prepare(background_knowledge)
Example #13
0
    def __init__(self, label=None, key: Optional = None, logic_program: LogicProgram = None):
        if logic_program is None:
            logic_program = SimpleProgram()

        super().__init__(label=label, key=key, logic_program=logic_program)
Example #14
0
from problog.program import SimpleProgram, PrologString, LogicProgram, PrologFile
from problog.logic import Constant, Var, Term, AnnotatedDisjunction
from problog import get_evaluatable

true = Term('true')
ok = Term('ok')
query = Term('query')

p = PrologFile("Try.pl")
x = [p]
for i in range(0, 2):
    s = SimpleProgram()
    brand = Term('brand')
    ind = Term('ind')
    prop = Term('prop')
    query = Term('query')
    X = Var('X')
    ford = Term('ford')
    seat = Term('seat')
    suzuki = Term('suzuki')
    audi = Term('audi')
    fiat = Term('fiat')
    s = SimpleProgram()
    s += AnnotatedDisjunction([
        prop(ind, brand, ford, p=0.222222222222222),
        prop(ind, brand, seat, p=0.222222222222222),
        prop(ind, brand, suzuki, p=0.222222222222222),
        prop(ind, brand, audi, p=0.222222222222222),
        prop(ind, brand, fiat, p=0.111111111111111)
    ], true)
    if i == 1:
Example #15
0
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 31 14:04:54 2020

@author: PasqualeDeMarinis
"""

from problog.program import SimpleProgram
from problog.logic import Constant, Var, Term, AnnotatedDisjunction
from problog import get_evaluatable

coin, heads, tails, win, query = Term('coin'), Term('heads'), Term(
    'tails'), Term('win'), Term('query')
C = Var('C')
p = SimpleProgram()
p += coin(Constant('c1'))
p += coin(Constant('c2'))
p += AnnotatedDisjunction([heads(C, p=0.4), tails(C, p=0.6)], coin(C))
p += (win << heads(C))
p += query(coin(C))

r = get_evaluatable().create_from(p).evaluate()
print(r)
Example #16
0
"""
Simple ProbLog code for a classifying a machine example using Problog code to encode the rules
"""
from problog.program import SimpleProgram
from mai_version.representation.example import SimpleProgramExampleWrapper
from mai_version.probeersel.mach_tests.mach_definitions_logic import *
from mai_version.classification.classification import get_labels_single_example_models

ex1 = SimpleProgram()

ex1 += worn(gear)
ex1 += worn(engine)
ex1 += replaceable(gear)

rules = SimpleProgram()
rules += (p0 << worn(X))
rules += (p1 << (worn(X) & ~replaceable(X)))
rules += (sendback << (worn(X) & ~replaceable(X)))
rules += (fix << (worn(X) & ~p1))
rules += (ok << ~p0)

possible_labels = [sendback, fix, ok]

labels = get_labels_single_example_models(ex1, rules, possible_labels)
print(labels)
    my_uniform(0,10)::a.
    0.5::b.
    c :- value(a, A), A >= 3; b.
    query(a).
    query(b).
    query(c).
"""

modeltext_new = """
    0.5::b.
    c :- value(a, A), A >= 3; b.
    query(a).
    query(b).
    query(c).
"""



s = SimpleProgram()
unif = Term('my_uniform')(Constant(0),Constant(10))
a = Term('a', p=unif)
s += a
for clause in PrologString(modeltext_new):
    s += clause

model = PrologString(modeltext)
# Pass the mapping between name and function using the distributions parameter.
x = list(PrologString(modeltext).__iter__())
x2 = list(s.__iter__())
result = list(sample.sample(model, n=3, format='dict', distributions={'my_uniform': integer_uniform}))
result2 = list(sample.sample(s, n=3, format='dict', distributions={'my_uniform': integer_uniform}))
Example #18
0
# ex1.label = fix
#
# ex2 += worn(engine)
# ex2 += worn(chain)
# ex2.label = sendback
#
# ex3 += worn(wheel)
# ex3.label = sendback
#
# ex4.label = ok

labeled_examples = [ex1, ex2, ex3, ex4]

possible_targets = [fix, sendback, ok]

background_knowledge = SimpleProgram()
background_knowledge += replaceable(gear)
background_knowledge += replaceable(chain)
background_knowledge += not_replaceable(engine)
background_knowledge += not_replaceable(wheel)

# Machine language

language_machines = TypeModeLanguage(False)

# manually adding the types
worn_type_sign = 'worn'
worn_type_args = ['part']  # type: TypeArguments
language_machines.add_types(worn_type_sign, worn_type_args)

replaceable_type_sign = 'replaceable'
Example #19
0
from problog.program import SimpleProgram

from mai_version.refinement.RefinementController import *

X = Var('X')
Y = Var('Y')
Z = Var('Z')

sendback, fix, ok, worn, replaceable = \
    Term('sendback'), Term('fix'), Term('ok'), Term('worn'), Term('replaceable')

not_replaceable = Term('not_replaceable')

initial_query = SimpleProgram()
initial_query += Term('true')

conj_1 = replaceable(X)
dict_1 = {X.name: '-'}
rmode_1 = RefinementMode(5, conj_1, dict_1)

conj_2 = not_replaceable(X)
dict_2 = {X: '-'}
rmode_2 = RefinementMode(5, conj_2, dict_2)

conj_3 = not_replaceable(X)
dict_3 = {X: '-'}
rmode_3 = RefinementMode(5, conj_3, dict_3)

r_controller = RefinementController([rmode_1, rmode_2, rmode_3])

literal = Term('test')(X, Y, Z)
Example #20
0
 def to_simple_program(self, program=SimpleProgram(), triple_mode=False):
     for prop in self.values():
         program += prop.to_clause(triple_mode)
     return program